The effect of reaction temperature change on equilibrium 12080-32-9

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Computed Properties of C8H12Cl2Pt and due to space limitations, I can only present the most important information.

Computed Properties of C8H12Cl2Pt. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Dynamics of the efficient cyclometalation of the undercoordinated organoplatinum complex [Pt(COD)(neoPh)]+ (neoPh = 2-methyl-2-phenylpropyl). Author is Neugebauer, Michael; Schmitz, Simon; Bruenink, Dana; Doltsinis, Nikos L.; Klein, Axel.

Reaction of the organoplatinum complex [Pt(COD)(neoPh)Cl] (neoPh = (2-methyl-2-phenylpropyl)) with Ag(PF6) leads to the undercoordinated cationic complex [Pt(COD)(neoPh)]+ which rapidly and quant. rearranges to the complex [Pt(COD)(κ2-neoPh)] through intramol. cyclometalation. Detailed NMR spectroscopy and single crystal XRD reveal a doubly metalated neoPh ligand. In line with exptl. observations, ab initio mol. dynamics simulations confirm that the cyclometalation reaction is exothermic and has a relatively low free energy barrier. In addition, the simulations provide detailed insight into the reaction mechanism, showing that an intermediate species exists in which the newly formed Pt-C bond coexists with a covalent Pt-H bond involving the leaving proton. The latter is found to eventually transfer onto an acetone solvent mol.

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Computed Properties of C8H12Cl2Pt and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New explortion of 12080-32-9

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Name: Dichloro(1,5-cyclooctadiene)platinum(II) and due to space limitations, I can only present the most important information.

Name: Dichloro(1,5-cyclooctadiene)platinum(II). Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Sky-Blue Triplet Emitters with Cyclometalated Imidazopyrazine-Based NHC-Ligands and Aromatic Bulky Acetylacetonates. Author is Pinter, Piermaria; Soellner, Johannes; Strassner, Thomas.

Platinum(II) complexes with an N-heterocyclic carbene and a cyclometalating Ph ligand (CĈ*) are excellent candidates as efficient blue triplet emitters for OLED applications. The electronic and photophys. properties of these complexes can be fine-tuned with the objective to increase the quantum yields and lower the phosphorescence decay times. We found that platinum complexes with an imidazopyrazine CĈ* ligand and bulky acetylacetonates are sky-blue triplet emitters, characterised by an almost unitary quantum yield and short phosphorescence decay times.

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Name: Dichloro(1,5-cyclooctadiene)platinum(II) and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Decrypt The Mystery Of 12080-32-9

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Recommanded Product: Dichloro(1,5-cyclooctadiene)platinum(II) and due to space limitations, I can only present the most important information.

Recommanded Product: Dichloro(1,5-cyclooctadiene)platinum(II). So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π-Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes.

Decarbonylation along with E atom transfer from Na(OCE) (E = P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me)TiCl], yielded the [(TptBu,Me)Ti(η3-ECNAd)] species (Ad = 1-adamantyl, TptBu,Me- = hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E = P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3)3; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3-, shows the same unprecedented coordination mode but with shortening of the N:C bond. As opposed to TiII, VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me)V(OCP)(CNAd)]. Theor. studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E = P.

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Recommanded Product: Dichloro(1,5-cyclooctadiene)platinum(II) and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of 12080-32-9

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Application of 12080-32-9 and due to space limitations, I can only present the most important information.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Platinum(II) complexes containing hydrazide-based aminophosphine ligands: Synthesis, molecular structures, computational investigation and evaluation as antitumour agents.Application of 12080-32-9.

Four new N,N-bis(diphenylphosphino)amine ligands (amine = 1-amino-4-methylpiperazine (L1), N-aminophthalimide (L2), 4-aminomorpholine (L3) and hydrazine dihydrochloride (L4)) and their Pt(II) complexes C1, C2, C3 and C4 were synthesized and characterized using IR and NMR spectroscopies. The crystal structures of C1, C2 and C3 were determined using single-crystal x-ray diffraction techniques. The antitumor activities of the synthesized complexes determined using MTT assay on MDA-MB-231 cell line revealed that the studied complexes, especially C2, significantly suppressed the proliferation of these cancer cells in a dose- and time-dependent manner (e.g. at a complex concentration of 100 μg ml-1, in 24 h, the reduction of the cell viability was 88.00, 38.89, 83.35 and 64.28% for C1-C4, resp.). Theor. approaches were also used to investigate the energy and the nature of metal-ligand and metal-chlorine interactions in the complexes, which could explain their biol. activities. The interaction between ligand and Pt is stronger in C2, while the Pt-Cl interaction is weaker in this complex in comparison with the other complexes.

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)Application of 12080-32-9 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research about 12080-32-9

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)SDS of cas: 12080-32-9 and due to space limitations, I can only present the most important information.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 12080-32-9, is researched, SMILESS is C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-], Molecular C8H12Cl2PtJournal, ChemPhotoChem called Mesoionic 1,2,3-Triazolo[1,5-a]pyridine-3-ylidenes in Phosphorescent Platinum(II) Complexes, Author is Soellner, Johannes; Strassner, Thomas, the main research direction is crystal structure mol triazolopyridinylidene platinum diketone complex optimized DFT; uv vis photoluminescence phosphorescence triazolopyridinylidene platinum diketone complex redox.SDS of cas: 12080-32-9.

Mesoionic carbene ligands based on 1,2,3-triazole platforms can be used in cyclometalated platinum(II) complexes to achieve an efficient phosphorescence even at room temperature In this report, 1,2,3-triazolo[1,5-a]pyridine-3-ylidenes are employed in such mols. along with β-diketonates with varying steric demand. For full structural characterization, NMR spectroscopy and XRD experiments were employed. The photophys. properties were studied in solid poly(Me methacrylate) (PMMA) matrixes, as well as dichloromethane solutions In PMMA, the synthesized complexes show quantum yields of 47-54% with emission bands in the yellow region of the visible spectrum. Cyclic voltammetry measurements along with DFT calculations helped to assign the nature of the observed emissions.

When you point to this article, it is believed that you are also very interested in this compound(12080-32-9)SDS of cas: 12080-32-9 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Decrypt The Mystery Of 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Category: alcohols-buliding-blocks, illustrating the importance and wide applicability of this compound(12080-32-9).

Category: alcohols-buliding-blocks. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Cyclometalated Platinum(II) Complexes with Mesoionic Dibenzofuranyl-1,2,3-triazol-4-ylidene Ligands: Synthesis, Characterization and Photophysical Properties. Author is Soellner, Johannes; Strassner, Thomas.

Platinum(II) complexes with mesoionic C-C*-cyclometalating 1,2,3-triazolylidene ligands are highly efficient phosphorescent emitters. Herein we report a series of this type bearing dibenzofuranyl-substituted carbenes along with different β-diketonate auxiliary ligands. They show luminescence in the green region of the visible spectrum and quantum yields of up to 78% at room temperature The proposed mol. structures were verified by NMR spectroscopy and x-ray diffraction experiments which prove the formation of the mesoionic carbene. Addnl., DFT calculations and cyclic voltammetry measurements were used to rationalize the observed photophys. properties of the reported complexes.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Category: alcohols-buliding-blocks, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Archives for Chemistry Experiments of 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Reference of Dichloro(1,5-cyclooctadiene)platinum(II), illustrating the importance and wide applicability of this compound(12080-32-9).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Synthesis and transition metal complexes of 1,1′-bis(diphenylethynylphosphino)ferrocene.Reference of Dichloro(1,5-cyclooctadiene)platinum(II).

The new ferrocene based bisphosphine [Fe{C5H4P(CCPh)2}2] (1) was synthesized in 82% yield by the treatment of bis(dichlorophosphino)ferrocene [Fe(C5H4PCl2)2] with four equivalent of lithium phenylacetylide. The reactions of 1 with aqueous H2O2, elemental sulfur or selenium afforded bis(chalcogenide) derivatives, [Fe{C5H4P(E)(CCPh)2}2] (2 E = O, 3 E = S, 4 E = Se). The reaction of 1 with [M(NC5H11)2(CO)4] (M = Mo, W), [RuCp(PPh3)2Cl] and [M(COD)Cl2] (M = Pd, Pt) resulted in the formation of the resp. chelate complexes, [Fe{C5H4P(CCPh)2}2{M(CO)4}] (5 M = Mo, 6 M = W), [Fe{C5H4P(CCPh)2}2{RuCp(Cl)}] (8) and [Fe{C5H4P(CCPh)2}2{MCl2}] (9 M = Pd, 10 M = Pt), whereas the reaction of 1 with [Ru(η6-p-cymene)Cl2]2 and [AuCl(SMe2)] yielded the corresponding bimetallic complexes [Fe{C5H4P(CCPh)2}2{RuCl2(η6-p-cymene)}2] (7) and [Fe{C5H4P(CCPh)2}2{AuCl}2] (15). The reactions between 1 and CuX in equimolar ratios also yielded binuclear complexes, [Fe{C5H4P(CCPh)2}2{CuX}2] (11 X = Cl, 12 X = Br, 13 X = I), whereas [Cu(CH3CN)4]BF4 yielded the cationic complex [(Fe{C5H4P(CCPh)2}2)2Cu]BF4 (14). All the compounds were characterized by spectroscopic methods and the structures of complexes 1, 5, 6, 8, 10, 13 and 14 were confirmed by single crystal x-ray diffraction studies.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Reference of Dichloro(1,5-cyclooctadiene)platinum(II), illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chemical Research in 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Related Products of 12080-32-9, illustrating the importance and wide applicability of this compound(12080-32-9).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Room-Temperature Phosphorescent Platinum(II) Alkynyls with Microsecond Lifetimes Bearing a Strong-Field Pincer Ligand, the main research direction is tetracoordinate platinum imidazolylcarbazolide complex preparation electrochem OLED; crystal structure tetracoordinate platinum imidazolylcarbazolide complex; mol structure tetracoordinate platinum imidazolylcarbazolide complex; imidazolylcarbazolide ligand preparation cyclometalation platinum acetylide complex; density functional theory; luminescence; pincer ligand; platinum; triplet state.Related Products of 12080-32-9.

The use of organometallic triplet emitters in organic light emitting diodes (OLEDs) is motivated by the premise of efficient intersystem crossing leading to unit internal quantum efficiencies. However, since most devices are based on solid-state components, an inherent limitation to square-planar Pt(II) phosphors is their tendency toward aggregation-based quenching. Here, a new class of emissive, four-coordinate Pt(II) species based on the bisimidazolyl carbazolide (BIMCA) ligand is introduced, which displays highly efficient, long-lived solid-state phosphorescence at room temperature A set of four BIMCAPt Ph acetylides were synthesized that emit in the green (λmax=507-540 nm) with >60% quantum yield and millisecond lifetimes. The structures of the resulting species reveal a nonplanar structure imposed by steric clashes between BIMCA and the iodo or alkynyl co-ligand. Ground-state and photophys. characterization are presented. D. functional theory calculations indicate that the BIMCA ligand dominates the frontier orbitals along with the 1st Franck-Condon singlet and triplet excited states.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Related Products of 12080-32-9, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Application of 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Computed Properties of C8H12Cl2Pt, illustrating the importance and wide applicability of this compound(12080-32-9).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Bimetallic Platinum Group Complexes of a Macrocyclic Pyrazolate/NHC Hybrid Ligand, published in 2021-09-13, which mentions a compound: 12080-32-9, mainly applied to macrocyclic calix imidazolylidenepyrazolate bimetallic platinum palladium NHC carbene preparation; pyrazolate macrocyclic NHC hybrid bimetallic platinum palladium preparation structure; crystal mol structure macrocyclic calix imidazolylidenepyrazolate carbene platinum palladium, Computed Properties of C8H12Cl2Pt.

Authors present the synthesis, structural characterization, and photophys. properties of dinuclear PdII and PtII-NHC complexes Pd2L(PF6)2 and Pt2L(PF6)2 based on a macrocyclic calix[4]imidazolylidene[2]pyrazolate ligand obtained by in situ deprotonation of the tetraimidazolium salt H6L(PF6)4. The PtII congener was also prepared by transmetalation from previously published AgI pillarplex Ag8L2(PF6)4. NMR spectroscopy (1H, 13C, 195Pt) combined with SC-XRD studies elucidated the structure of the PdII and PtII complexes in the solid state and in solution The d8 metal ions of both congeners are coordinated in a slightly distorted square-planar arrangement. Similar to the previously reported NiII complex Ni2L(PF6)2, the heavier metal homologues adopt a bent, saddle-shaped structure. As observed for structurally similar PtII complexes in solution, bimetallic Pt2L(PF6)2 showed photoluminescence in the blue region. In the solid state, emission was observed at a similar energy with unusually short lifetimes compared to other monometallic PtII complexes. DFT and TDDFT studies shed light on the nature of the most bathochromic transitions, suggesting a significant pyrazolate- and NHC-centered π-π* character.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Computed Properties of C8H12Cl2Pt, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The origin of a common compound about 12080-32-9

This literature about this compound(12080-32-9)Computed Properties of C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Yilmaz, Ismail; Acar-Selcuki, Nursel; Coles, Simon J.; Pekdemir, Fatih; Sengul, Abdurrahman published the article 《Spectroscopic, structural and DFT studies of luminescent Pt(II) and Ag(I) complexes with an asymmetric 2,2′-bipyridine chelating ligand》. Keywords: carbomethoxybipyridine preparation platinum silver complexation; crystal mol structure methylcarbomethoxybipyridine platinum silver complex; DFT luminescent platinum silver methylcarbomethoxybipyridine asym bipyridine chelating ligand.They researched the compound: Dichloro(1,5-cyclooctadiene)platinum(II)( cas:12080-32-9 ).Computed Properties of C8H12Cl2Pt. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:12080-32-9) here.

A new unsym. substituted 2,2′-bipyridine ligand, 5-methyl-5′-carbomethoxy-2,2′-bipyridine (L) was isolated from the dry distillation of the copper(II) complex, mono-aqua-bis(trans-5-methyl-pyridine-2-carboxylato-N,O)copper(II). The ligand was fully characterized. The spectroscopic and single-crystal x-ray diffraction (SCXRD) studies of the coordination compounds of the ligand with platinum(II) and silver(I); cis-Pt(L)Cl2 (1) and [Ag(L)2]PF6 (2), resp. are reported. In 1, the Pt center coordinates to tertiary N atoms of the ligand and two chloride ions to form a neutral square-planar coordination sphere, while in 2, the Ag(I) center is coordinated by two ligands through N atoms to generate a cationic flattened tetrahedron geometry in which two mean planes intersect each other at 50.93°. The pyridine rings are nearly coplanar as revealed by the torsion angle of N2-C7-C6-N1 1.32(5)°. In both complexes, L acts as a chelating ligand through pyridyl N atoms. In 1, the mol. units are stacked in a head-to-tail fashion with a Pt···Pt separation of 3.5 Å. Supramol. self-assembly of the mol. units by extensive intermol. contacts through C-H···Cl and C-H···O between the adjacent units results in an infinite two-dimensional flattened-out herringbone structure in the crystalline state. In 2, the mol. units are interconnected with each other by C-H···O contacts between the adjacent units running parallel to each other. Both complexes are fluorescent in solution and have emission maxima in the UV-Vis regions, which is a very important property for optoelectronic applications. DFT (d. functional theory) and TD-DFT (time-dependent-DFT) calculations were performed at B3LYP/6-311+G(d,p)/LANL2DZ level to explore structural, electronic, and spectroscopic properties to compare with the exptl. results. The MOs were carried out with DFT at the same level.

This literature about this compound(12080-32-9)Computed Properties of C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts