Little discovery in the laboratory: a new route for 1195-58-0

Compound(1195-58-0)Recommanded Product: Pyridine-3,5-dicarbonitrile received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) called Reduction of 3,5-disubstituted pyridines to dihydropyridines, Author is Booker, Evans; Eisner, Ulli, which mentions a compound: 1195-58-0, SMILESS is N#CC1=CC(C#N)=CN=C1, Molecular C7H3N3, Recommanded Product: Pyridine-3,5-dicarbonitrile.

The pyridines (I, R = Me, Et) underwent reduction with NaBH4 to give mixtures of the corresponding 1,4- II and 1,2-dihydropyridines III, resp. The compositions of the isomer mixtures produced in various solvents were determined Reduction of I by NaBH3CN and by B2H6 gave II and III (R = Me, Et), resp.

Compound(1195-58-0)Recommanded Product: Pyridine-3,5-dicarbonitrile received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New explortion of 1195-58-0

Compound(1195-58-0)Formula: C7H3N3 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Belova, N. A.; Suvorov, B. V.; Kagarlitskii, A. D. researched the compound: Pyridine-3,5-dicarbonitrile( cas:1195-58-0 ).Formula: C7H3N3.They published the article 《Oxidative ammonolysis of 3,5-lutidine on vanadium oxide contacts modified by additives of tin and titanium oxides》 about this compound( cas:1195-58-0 ) in Izvestiya Akademii Nauk Kazakhskoi SSR, Seriya Khimicheskaya. Keywords: lutidine ammoxidation metal oxide; vanadium oxide ammoxidation lutidine; tin oxide ammoxidation lutidine; titanium oxide ammoxidation lutidine. We’ll tell you more about this compound (cas:1195-58-0).

Ammoxidation of 3,5-lutidine on the title catalysts at 340-420° gave 5-methylnicotinonitrile (I) and 3,5-pyridinedicarbonitrile (II) in yields as high as 85 and 65%, resp. At the lower temperatures and contact times, II was formed sequentially via I, but under the more drastic conditions II could also be formed directly from 3,5-lutidine.

Compound(1195-58-0)Formula: C7H3N3 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Something interesting about 1195-58-0

Compound(1195-58-0)Related Products of 1195-58-0 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Related Products of 1195-58-0. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Optimizing Open Iron Sites in Metal-Organic Frameworks for Ethane Oxidation: A First-Principles Study. Author is Liao, Peilin; Getman, Rachel B.; Snurr, Randall Q..

Activation of the C-H bonds in ethane to form ethanol is a highly desirable, yet challenging, reaction. Metal-organic frameworks (MOFs) with open Fe sites are promising candidates for catalyzing this reaction. One advantage of MOFs is their modular construction from inorganic nodes and organic linkers, allowing for flexible design and detailed control of properties. In this work, we studied a series of single-metal atom Fe model systems with ligands that are commonly used as MOF linkers and tried to understand how one can design an optimal Fe catalyst. We found linear relationships between the binding enthalpy of oxygen to the Fe sites and common descriptors for catalytic reactions, such as the Fe 3d energy levels in different reaction intermediates. We further analyzed the three highest-barrier steps in the ethane oxidation cycle (including desorption of the product) with the Fe 3d energy levels. Volcano relationships are revealed with peaks toward higher Fe 3d energy and stronger electron-donating group functionalization of linkers. Furthermore, we found that the Fe 3d energy levels pos. correlate with the electron-donating strength of functional groups on the linkers. Finally, we validated our hypotheses on larger models of MOF-74 iron sites. Compared with MOF-74, functionalizing the MOF-74 linkers with NH2 groups lowers the enthalpic barrier for the most endothermic step in the reaction cycle. Our findings provide insight for catalyst optimization and point out directions for future exptl. efforts.

Compound(1195-58-0)Related Products of 1195-58-0 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Now Is The Time For You To Know The Truth About 1195-58-0

Compound(1195-58-0)SDS of cas: 1195-58-0 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Dihydropyridines. XII. Electronic structure and reactivity of monocyanopyridines and symmetric dicyanopyridines》. Authors are Kuthan, J..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).SDS of cas: 1195-58-0. Through the article, more information about this compound (cas:1195-58-0) is conveyed.

cf. CA 65, 3828a. The electronic structure of 2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, 2,6-dicyanopyridine, and 3,5-dicyanopyridine were studied by means of the simple mol. orbital theory (HMO). The reactivity of these compounds toward nucleophilic reagents is discussed with respect to possible formation of corresponding dihydro derivatives or products with transformed functional groups. Ir, N.M.R., and uv spectra of the compounds studied are compared with the calculated values for the bond orders, π-electron densities, and with the theoretical excitation energies. Bond orders and π-electron densities as calculated on the basis of HMO-approximation are correlated with analogous data obtained by the self-consistent-field method.

Compound(1195-58-0)SDS of cas: 1195-58-0 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Something interesting about 1195-58-0

Compound(1195-58-0)Related Products of 1195-58-0 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Dihydropyridines. V. Formation of the isomeric 1,2- and 1,4-dihydro derivatives in the reaction of methylmagnesinm iodide with 3,5-dicyanopyridine and 3,5-dicyano-2-methylpyridine》. Authors are Kuthan, J.; Janeckova, E.; Havel, M..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).Related Products of 1195-58-0. Through the article, more information about this compound (cas:1195-58-0) is conveyed.

cf. CA 58, 5626a. MeMgI adds to 3,5-dicyanopyridine (I) to give 3,5-dicyano-2-methyl-1,2-dihydropyridine (II) and 3,5-dicyano-4-methyl-1,4-dihydropyridine (III). Similarly, 3,5-dicyano-2-methylpyridine (IV) forms 3,5-dicyano-2,6-dimethyl-1,2-dihydropyridine (V) and 3,5-dicyano-2,4-dimethyl-1,4-dihydropyridine (VI), resp. Nicotinoyl chloride-HCl (from 500 g. nicotinoic acid and 1400 ml. SOCl2) refluxed 35 hrs. with 500 ml. Br, the mixture evaporated on a steam bath, the residue dissolved in 1 l. absolute EtOH, and the solution heated 30 min. on a steam bath gave 81% HBr salt of Et 5-bromonicotinate, m. 147-7.5° (EtOH), from which 80% Et 5-bromonicotinate (VII), b0.5 86-92°, m. 42°, was obtained by treatment with Na2CO3. VII (50 g.) stirred with 30 g. CuCN in 50 ml. HCONMe2 2 hrs. at 160-75°, the mixt evaporated in vacuo, and the residue shaken with 500 ml. concentrated NH4OH and extracted successively with 800 ml. C6H6 and 200 ml. Et2O gave after evaporation 45% Et 5-cyanonicotinate (VIII), b16 143-5°, m. 89-90° (petr. ether). VIII (50 g.) in 1 l. absolute EtOH saturated with NH3 kept 7 days at room temperature gave 72% 5-cyanonicotinamide (IX), m. 220-1° (H2O, EtOH). A mixture of 14 g. IX and 40 ml. anhydrous C5H5N treated over 15 min. with 9 ml. POCl3, stirred 8 hrs., decomposed with ice, alkalized with NH4OH, and extracted with CHCl3 gave 64% I, m. 113-13.5° (dilute EtOH), sublimed 80-90°/10 mm. K salt of 2-hydroxy-3,5-dicyano-6-methylpyridine (6.07 g.) and 7 g. PCl5 treated with 10 ml. POCl3, and the mixture refluxed 30 min., evaporated in vacuo, decomposed with ice, and extracted with C6H6 gave 35% 3,5-dicyano-2-chloro-6-methylpyridine, m. 143-3.5°, which gave IV, m. 76-7°, on catalytic hydrogenation. Reaction of 1.04 g. I in 70 ml. Et2O with MeMgI (from 0.8 g. Mg, 2 ml. MeI, and 30 ml. Et2O) followed by chromatography on Al2O3 (activity II) gave 512 mg. yellow II, m. 114-15° (C6H6, dilute EtOH), and 240 mg. yellowish III, m. 180.5-81° (dilute EtOH). Similarly, 670 mg. IV with MeMgI (from 0.72 g. Mg, 1.9 ml. MeI, and 25 ml. Et2O) afforded 405 mg. yellow V, m. 152-3° (dilute MeOH), and 138 mg. yellowish VI, m. 129.5-30.5°. Dehydrogenation of II, III, V, and VI by heating with equal amounts 30% Pd-C 20 min. at 200-5° gave IV, 3,5-dicyano-4-methylpyridine, m. 84.5-85°, 3,5-dicyano-2,6-dimethylpyridine, m. 118-18.5°, and 3,5-dicyano-2,4-dimethylpyridine, m. 115-15.5°, resp. Ultraviolet and infrared data for II, III, V, and VI, and of some of the intermediates, are given.

Compound(1195-58-0)Related Products of 1195-58-0 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Flexible application of in synthetic route 1195-58-0

Compound(1195-58-0)Recommanded Product: Pyridine-3,5-dicarbonitrile received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Recommanded Product: Pyridine-3,5-dicarbonitrile. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Electron-Deficient Heteroarenium Salts: An Organocatalytic Tool for Activation of Hydrogen Peroxide in Oxidations. Author is Sturala, Jiri; Bohacova, Sona; Chudoba, Josef; Metelkova, Radka; Cibulka, Radek.

A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quant. conversions, high preparative yields and excellent chemoselectivity. The high efficiency of electron-poor heteroarenium salts is rationalized by their ability to readily form adducts with nucleophiles, as documented by low pKR+ values (pKR+ < 5) and less neg. reduction potentials (Ered > -0.5 V). Hydrogen peroxide adducts formed in situ during catalytic oxidation act as substrate oxidizing agents. The Gibbs free energies of oxygen transfer from these heterocyclic hydroperoxides to thioanisole, obtained by calculations at the B3LYP/6-311++g(d,p) level, showed that they are much stronger oxidizing agents than alkyl hydroperoxides and in some cases are almost comparable to derivatives of flavin hydroperoxide acting as oxidizing agents in monooxygenases.

Compound(1195-58-0)Recommanded Product: Pyridine-3,5-dicarbonitrile received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Can You Really Do Chemisty Experiments About 1195-58-0

Compound(1195-58-0)Application In Synthesis of Pyridine-3,5-dicarbonitrile received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Dihydropyridines. VII. Reactions of symmetrically alkylated 3,5-dicyanopyridines with sodium borohydride, published in 1964, which mentions a compound: 1195-58-0, Name is Pyridine-3,5-dicarbonitrile, Molecular C7H3N3, Application In Synthesis of Pyridine-3,5-dicarbonitrile.

cf. ibid. 1495; CA 60, 6817d. NaBH4 reduction of 3,5-dicyanopyridines I-VI gave 3,5-dicyano-1,2- and 1,4-dihydropyridines VII-XVII. I and LiAlH4 gave a mixture of VII and VIII which was separated by chromatography. Two procedures were used in the reduction of I-VI: Method A. EtOH (0.2 ml.) was added to a mixture of 38 mg. NaBH4 and 0.001 mole ground I-VI, and the precipitated product washed with 2.5 ml. cold H2O. Method B. NaBH4 (150 mg.) was added to a mixture of 0.002 mole I-VI and 5 ml. EtOH, the solution diluted with H2O to ∼80 ml. after several hrs., and the precipitated filtered off (starting compound, method, product, % yield, and m.p. given): I, B, VIII, 62, 205-6° (dilute EtOH); I, A, VII, 188-9° (Me2CO-cyclohexane) (VIII was also obtained); II, A, IX, 50, 214-15° (dilute EtOH); III, A, X + XI (92:8), 44, 154-72° (mixture); IV, B, XII, 89, 232-3° (MeOH); V, B, XIV + XV (71:29), 69, 138-69° (mixture); VI, -, XVI + XVII (86:14), 77, 108-22° (mixture). Similar results were obtained by reduction of I-IV with LiAlH4. Oxidation of 1.73 g. 3,5-dicyano-2-methyl-4-ethyl-1,2-dihydropyridine in 70 ml. EtOH with Ag2O from 7 g. AgNO3 gave 91% 3,5-dicyano-2-methyl-4-ethylpyridine (XVIII), m. 68-8.5°, sublimed 55-60°/0.4 mm. Treatment of 1.28 g. XVIII with MeMgI prepared from 750 mg. Mg and 1.9 ml. MeI gave 61% XVII, m. 101-2° (dilute acetone), which was oxidized with MnO2 to VI, m. 70-1°.

Compound(1195-58-0)Application In Synthesis of Pyridine-3,5-dicarbonitrile received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The origin of a common compound about 1195-58-0

Compound(1195-58-0)Synthetic Route of C7H3N3 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Synthetic Route of C7H3N3. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Synthesis and reactions of 3-methyl-5-cyanopyridine under oxidative ammonolysis conditions. Author is Suvorov, B. V.; Belova, N. A..

V2O5-TiO2 (1:32) was recommended over 1:16 V2O5-TiO2, 1:0.5 V2O5-SnO2 and 2:1 V2O5-Fe2O3 for the title synthesis, >90% selectivity with 100% 3,5-butadiene (I) conversion at 340° with 1:24:10:10-40 I-O2-NH3-H2O. The 3,5-dicyanopyridine yield was 4.2-5.3% under these conditions, but reached 65.2% at 380° in the absence of H2O.

Compound(1195-58-0)Synthetic Route of C7H3N3 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Pyridine-3,5-dicarbonitrile), if you are interested, you can check out my other related articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The important role of 1195-58-0

From this literature《Dihydropyridines. XV. Reactions of some 3,5-dicyanopyridines with complex aluminum hydrides》,we know some information about this compound(1195-58-0)Electric Literature of C7H3N3, but this is not all information, there are many literatures related to this compound(1195-58-0).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1195-58-0, is researched, SMILESS is N#CC1=CC(C#N)=CN=C1, Molecular C7H3N3Journal, Collection of Czechoslovak Chemical Communications called Dihydropyridines. XV. Reactions of some 3,5-dicyanopyridines with complex aluminum hydrides, Author is Kuthan, Josef; Prochazkova, J.; Janeckova, E., the main research direction is aluminum hydrides pyridines reduction; hydrides aluminum pyridines reduction; pyridines reduction aluminum hydrides; reduction pyridines aluminum hydrides.Electric Literature of C7H3N3.

The effect of 4 complex Al hydrides on the formation of the 1,2- and 1,4-dihydro derivatives was studied. The reductions were carried out in tetrahydrofuran or Et2O and the products separated by thin layer chromatography (the starting compound I, reagent, % yield of the mixture, product(s), and their ratio given): I (R1 = R2 = H), LiAlH4, NaAlH4, NaAlH2(OEt)2, 41-98, II (R1 = R2 = H), III (R1 = R2 = H), 44-7: 53-6; I (R1 = R2 = H), NaAlH2(OCH2CH2OMe)2, 12, II (R1 = R2 = H), 100%; I (R1 = H, R2 = Me), LiAlH4, 36, III (R1 = H, R2 = Me), 100%; I (R1 = H, R2 = Et), LiAlH4, 25, II (R1 = H, R2 = Et), III (R1 = H, R2 = Et), 91:9; I (R1 = Me, R2 = H), LiAlH4, 80, II (R1 = Me, R2 = H), 100%; I (R1 = R2 = Me), LiAlH4, 65, II (R1 = R2 = Me), III (R1 = R2 = Me), 43:57; and I (R1 = Me, R2 = Et), LiAlH4, 48, II (R1 = Me, R2 = Et), III (R1 = Me, R2 = Et), 20:80.

From this literature《Dihydropyridines. XV. Reactions of some 3,5-dicyanopyridines with complex aluminum hydrides》,we know some information about this compound(1195-58-0)Electric Literature of C7H3N3, but this is not all information, there are many literatures related to this compound(1195-58-0).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research about 1195-58-0

From this literature《Electrochemical reduction of cyanopyridines. General mechanism》,we know some information about this compound(1195-58-0)Related Products of 1195-58-0, but this is not all information, there are many literatures related to this compound(1195-58-0).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Electrochemical reduction of cyanopyridines. General mechanism, published in 1972, which mentions a compound: 1195-58-0, Name is Pyridine-3,5-dicarbonitrile, Molecular C7H3N3, Related Products of 1195-58-0.

Electrochem. reduction of mono- and dicyanopyridines at a Hg electrode proceded via intermediates containing a cyclic π-electron septet formed after uptake of the 1st electron; these intermediates underwent either protonation, dimerization, or further 1-electron reduction, depending on the position of the cyano group(s), the acidity of the medium, and the electrode potential. This mechanism was substantiated by LCAO-MO and SCF calculations; the exptl. half-wave potentials were correlated to the energy of the lowest free MO of the substrate.

From this literature《Electrochemical reduction of cyanopyridines. General mechanism》,we know some information about this compound(1195-58-0)Related Products of 1195-58-0, but this is not all information, there are many literatures related to this compound(1195-58-0).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts