The influence of catalyst in reaction 1195-58-0

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Safety of Pyridine-3,5-dicarbonitrile, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Safety of Pyridine-3,5-dicarbonitrile. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Dihydropyridines. XVIII. Atom localization energies of monocyanopyridines and symmetrical dicyanopyridines. Author is Kuthan, Josef; Skala, Vratislav.

Satisfactory agreement was found between the exptl. data of nucleophilic and homolytic reactions of monocyanopyridines and sym. dicyanopyridines and the corresponding atom localization energies. The calculation of π-elec-tonic structure of these compounds was carried out by the Hueckel M.O. L.C.A.O. method.

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Safety of Pyridine-3,5-dicarbonitrile, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Discover the magic of the 1195-58-0

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)SDS of cas: 1195-58-0, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

SDS of cas: 1195-58-0. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Optimizing Open Iron Sites in Metal-Organic Frameworks for Ethane Oxidation: A First-Principles Study.

Activation of the C-H bonds in ethane to form ethanol is a highly desirable, yet challenging, reaction. Metal-organic frameworks (MOFs) with open Fe sites are promising candidates for catalyzing this reaction. One advantage of MOFs is their modular construction from inorganic nodes and organic linkers, allowing for flexible design and detailed control of properties. In this work, we studied a series of single-metal atom Fe model systems with ligands that are commonly used as MOF linkers and tried to understand how one can design an optimal Fe catalyst. We found linear relationships between the binding enthalpy of oxygen to the Fe sites and common descriptors for catalytic reactions, such as the Fe 3d energy levels in different reaction intermediates. We further analyzed the three highest-barrier steps in the ethane oxidation cycle (including desorption of the product) with the Fe 3d energy levels. Volcano relationships are revealed with peaks toward higher Fe 3d energy and stronger electron-donating group functionalization of linkers. Furthermore, we found that the Fe 3d energy levels pos. correlate with the electron-donating strength of functional groups on the linkers. Finally, we validated our hypotheses on larger models of MOF-74 iron sites. Compared with MOF-74, functionalizing the MOF-74 linkers with NH2 groups lowers the enthalpic barrier for the most endothermic step in the reaction cycle. Our findings provide insight for catalyst optimization and point out directions for future exptl. efforts.

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)SDS of cas: 1195-58-0, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about 1195-58-0

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Safety of Pyridine-3,5-dicarbonitrile, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Oxidation of organic compounds. XCIV. Synthesis of 3,5-dicyanopyridine by the oxidative ammonolysis of 3,5-butidine》. Authors are Suvorov, B. V.; Kagarlitskii, A. D.; Belova, N. A.; Kutzhanov, R. T..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).Safety of Pyridine-3,5-dicarbonitrile. Through the article, more information about this compound (cas:1195-58-0) is conveyed.

Ammoxidation of 3,5-lutidine (I) using 1:9:17 I-O-NH3 at 350° in the presence of fused vanadium oxide-titanium oxide with a 0.5 sec contact time gave 40% 3,5-pyridinedicarbonitrile (II) and 5-methyl-3-pyridinecarbonitrile. Hydrolysis of II in aqueous NaOH gave 3,5-pyridinedicarboxylic acid.

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Safety of Pyridine-3,5-dicarbonitrile, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Brief introduction of 1195-58-0

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Electric Literature of C7H3N3, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Electric Literature of C7H3N3. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about HMO [Hueckel molecular orbital] calculation and the reactivity of quinolinecarbonitriles and isoquinolinecarbonitriles with nucleophilic reagents. Author is Ide, Akio; Matsumori, Kunihiko; Ishizu, Kazuhiko; Watanabe, Hiroyasu.

Simple Hueckel MO calculations were carried out to explain the fact that the Grignard reagents attack the CN group of 2- and 4-quinolinecarbonitriles and 1- and 3-isoquinolinecarbonitriles, whereas the ring is attacked in the case of 3-quinolinecarbonitrile and 4-isoquinolinecarbonitrile. These facts could be explained by the reactivity indexes obtained with the following parameters: α + 0.5β for the Coulomg integral of N in the ring, α + 1.1β for the Coulomb integral of N of the cyano group, and 1.4β for resonance integral of the cyano group. The νCN absorption could be correlated with the π-bond order of the cyano group and the chem. shifts of H with the π-electron density (qr) by the equation: δ = 19.64 – 12.20qr. 1-Propionylisoquinoline, b5 125°, was prepared

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Electric Literature of C7H3N3, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fun Route: New Discovery of 1195-58-0

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)SDS of cas: 1195-58-0, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

SDS of cas: 1195-58-0. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Electron-Deficient Heteroarenium Salts: An Organocatalytic Tool for Activation of Hydrogen Peroxide in Oxidations. Author is Sturala, Jiri; Bohacova, Sona; Chudoba, Josef; Metelkova, Radka; Cibulka, Radek.

A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quant. conversions, high preparative yields and excellent chemoselectivity. The high efficiency of electron-poor heteroarenium salts is rationalized by their ability to readily form adducts with nucleophiles, as documented by low pKR+ values (pKR+ < 5) and less neg. reduction potentials (Ered > -0.5 V). Hydrogen peroxide adducts formed in situ during catalytic oxidation act as substrate oxidizing agents. The Gibbs free energies of oxygen transfer from these heterocyclic hydroperoxides to thioanisole, obtained by calculations at the B3LYP/6-311++g(d,p) level, showed that they are much stronger oxidizing agents than alkyl hydroperoxides and in some cases are almost comparable to derivatives of flavin hydroperoxide acting as oxidizing agents in monooxygenases.

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)SDS of cas: 1195-58-0, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New downstream synthetic route of 1195-58-0

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Recommanded Product: Pyridine-3,5-dicarbonitrile, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1195-58-0, is researched, SMILESS is N#CC1=CC(C#N)=CN=C1, Molecular C7H3N3Journal, Journal of Heterocyclic Chemistry called Correlation of 2-, 3-, 4- and disubstituted pyridine gas-phase proton affinities with ab initio calculated energies at the STO-3G basis set level, Author is Caronna, Tullio; Vittimberga, Bruno M., the main research direction is proton affinity pyridine derivative energy calculation; ab initio protonation pyridine energy.Recommanded Product: Pyridine-3,5-dicarbonitrile.

Total energies of 2-, 3-, 4- and disubstituted pyridines were calculated for the salt and the free base using ab initio MO calculations at the STO-3G basis set level. In each set, the difference in energy, ΔEH, between the salt and the free base was calculated and plotted against exptl. derived gas-phase proton affinities. The correlation was very good for each of the substituent categories listed. All of the energies and proton affinities were then plotted together on the same graph. The result was an excellent correlation with r = 0.97. The linear equation for gas phase proton affinity, PAB = 28.51 + 435.45ΔEH kcal/mol, was derived from this plot and was used to calculate proton affinities for all 31 compounds used in this study as well as for a series of dicyanopyridines for which values of proton affinity are not available at this time.

There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Recommanded Product: Pyridine-3,5-dicarbonitrile, and with the development of science, more effects of this compound(1195-58-0) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The important role of 1195-58-0

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Computed Properties of C7H3N3, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1195-58-0, is researched, SMILESS is N#CC1=CC(C#N)=CN=C1, Molecular C7H3N3Journal, Article, ACS Omega called Thermodynamic Parameters of Elementary Steps for 3,5-Disubstituted 1,4-Dihydropyridines To Release Hydride Anions in Acetonitrile, Author is Zhao, Hui; Li, Yang; Zhu, Xiao-Qing, the main research direction is dihydropyridine hydride ion source thermodn.Computed Properties of C7H3N3.

A series of 3,5-disubstituted 1,4-dihydropyridine derivatives including the derivative with two chiral centers, 6H (R2 = CH3, CH2Ph), as a new type of organic hydride source were synthesized and characterized. The thermodn. driving forces (defined as enthalpy changes or standard redox potentials) of the 6 elementary steps for the organic hydrides to release hydride ions in acetonitrile were measured by isothermal titration calorimeter and electrochem. methods. The impacts of the substituents and functional groups bearing the N1 and C3/C5 positions on the thermodn. driving forces of the 6 elementary steps were examined and analyzed. Moreover, the results showed that the reaction mechanism between the chiral organic hydride and activated ketone (Et benzoylformate) was identified as the concerted hydride transfer pathway based on the thermodn. anal. platform. These valuable and crucial thermodn. parameters will provide a broadly beneficial impact on the applications of 3,5-disubstituted 1,4-dihydropyridine derivatives in organic synthesis and pharmaceutical chem.

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Computed Properties of C7H3N3, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 1195-58-0

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Application of 1195-58-0, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Reaction of Grignard reagent with 3,5-dicyanopyridines》. Authors are Lukes, R.; Kuthan, J..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).Application of 1195-58-0. Through the article, more information about this compound (cas:1195-58-0) is conveyed.

Et2O solutions of 3,5-dicyanopyridines reacted at 20-40° with MeMgI (Ia) or EtMgBr (Ib) in 4-6-fold excess to form NH.CR1:C(CN).CR2:C(CN).CHR3 or NH.CR1:C(CN).CHR2.C(CN):CR3. The following were prepared: R1 = R2 = R3 = H (I); R1 = R2 = H, R3 = Me (II); R1 = R3 = H, R2 = Et (III); R1 = Me, R2 = R3 = H (IV); R1 = R3 = Me, R3 = H (V); R1 = R3 = Me, R2 = H (VI); R1 = H, R2 = R3 = Me (VII); R1 = H, R2 = Me, R3 = Et (VIII); R1 = H, R2 = Et, R3 = Me (IX); R1 = R3 = Me, R2 = H (X); R1 = R2 = R3 = Me (XI); R1 = R2 = H, R3 = Me (XII); R1 = R3 = H, R2 = Et (XIII); R1 = R2 = Me, R3 = H (XIV); R1 = R2 = R3 = Me (XV). I with Ia gave 76% XII, I with Ib 65% XIII, II with Ia 66% VII, II with Ib 48% VIII, III with Ia 89% IX, IV with Ia about 43% X and XIV, V with Ia 82% XI, VI with Ia 35% XV.

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Application of 1195-58-0, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fun Route: New Discovery of 1195-58-0

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Category: alcohols-buliding-blocks, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Volke, J.; Skala, V. published an article about the compound: Pyridine-3,5-dicarbonitrile( cas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1 ).Category: alcohols-buliding-blocks. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1195-58-0) through the article.

Electrochem. reduction of mono- and dicyanopyridines at a Hg electrode proceded via intermediates containing a cyclic π-electron septet formed after uptake of the 1st electron; these intermediates underwent either protonation, dimerization, or further 1-electron reduction, depending on the position of the cyano group(s), the acidity of the medium, and the electrode potential. This mechanism was substantiated by LCAO-MO and SCF calculations; the exptl. half-wave potentials were correlated to the energy of the lowest free MO of the substrate.

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Category: alcohols-buliding-blocks, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The origin of a common compound about 1195-58-0

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Safety of Pyridine-3,5-dicarbonitrile, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Safety of Pyridine-3,5-dicarbonitrile. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Dihydropyridines. XVII. π-Electronic structure and reactivity of alkyl 3,5-dicyanopyridines.

The π-electronic structure of alkyl 3,5-dicyanopyridines was studied by the Hueckel M.O. L.C.A.O. method. The heteroatom model was used in the calculations The exptl. course of nucleophilic reactions was in agreement with the calculated superdelocalizabilities. Some of the exptl. excitation energies depended linearly on the calculated transition energies. Correlation was found between the values of proton shifts in the N.M.R. spectra of dicyanopyridines and the corresponding electron densities.

If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Safety of Pyridine-3,5-dicarbonitrile, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts