Adding a certain compound to certain chemical reactions, such as: 110-73-6, 2-(Ethylamino)ethanol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 110-73-6, blongs to alcohols-buliding-blocks compound. HPLC of Formula: C4H11NO
1-(tert-Butoxycarbonyl)-5-hydroxyindole (2.33 g, 10.0 mmol) and triphenylphosphine (5.25 g, 20.0 mmol) were dissolved in toluene (46.0 mL), and the solution was added with glycidol (1.32 mL, 20.0 mmol) and 40% DEAD-toluene solution (9.10 mL, 20 mmol) at room temperature, followed by stirring at 80C for 4 hours. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (hexane/ethyl acetate=4/1). A crude product (1.28 g) of 1-(tert-butoxycarbonyl)-5-hydroxyindole (1.28 g) was obtained. The obtained crude product was dissolved in N,N-dimethylacetoamide (20.0 mL), and the solution was added with 2- (ethylamino) ethanol (8.60 mL, 87.8 mmol), followed by stirring at 80C for 4 hours. The reaction mixture was added with water and extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (chloroform/methanol =9/1) to obtain 1-(tert-butoxycarbonyl)-5-{3-[N-ethyl(2-hydroxyethyl)amino]-2-hy droxypropoxy}indole (1.53 g, 40%). ESI-MS m/z: 379 [M+H]+; 1H-NMR (CDCl3)delta(ppm): 1.07 (t, J = 7.2 Hz, 3H), 1.66 (s, 9H), 2.61-2.80 (m, 6H), 3.61-3.68 (m, 2H), 3.99-4.14 (m, 3H), 6.48 (d, J = 3.9 Hz, 1H), 6.94 (dd, J = 2.6, 8.7 Hz, 1H), 7.04 (d, J = 2.6 Hz, 1H), 7.56 (d, J = 3.9 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H).
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-73-6, its application will become more common.
Reference:
Patent; Kyowa Hakko Kirin Co., Ltd.; EP2108642; (2009); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts