New explortion of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH or send Email.. COA of Formula: C8H10O2

Authors Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH in SPRINGER published article about PARTICLE-SHAPE; BAYER-PROCESS; PHYSICAL-PROPERTIES; CARBON-DIOXIDE; WASTE; NEUTRALIZATION; ADSORBENT; LIME; STABILIZATION; STRENGTH in [Reddy, Peddireddy Sreekanth; Mohanty, Bijayananda] NIT Mizoram, Dept Civil Engn, Aizawl 796012, Mizoram, India; [Reddy, Narala Gangadhara; Rao, Bendadi Hanumantha] ITT Bhubaneswar, Sch Infrastruct, Khorda 752050, Odisha, India; [Reddy, Narala Gangadhara] Shantou Univ, Dept Civil & Environm Engn, Shantou 515063, Guangdong, Peoples R China; [Serjun, Vesna Zalar] Slovenian Natl Bldg & Civil Engn Inst Slovenia, Dept Mat, Ljubljana 1000, Slovenia; [Das, Sarat Kumar] IIT ISM Dhanbad, Dept Civil Engn, Dhanbad 826004, Jharkhand, India; [Reddy, Krishna R.] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL USA in 2021, Cited 205. COA of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In order to conserve natural resources and prevent waste generation, effective utilization of industrial wastes and/or by-products for beneficial engineering applications becomes inevitable. In order to accomplish this, extensive research studies, exploring properties and new applications of waste materials in a sustainable and environmentally friendly manner, have been initiated worldwide. Red mud (RM, also known as bauxite residue) is one of the wastes generated by the aluminium industry and its disposal and utilization have been traditionally hindered due to the extreme alkalinity (pH about 10.5-13.5). To date, no comprehensive review on various properties of RM of different origin and associated challenges in using it as a beneficial engineering material has been performed. The objective of this study is first to critically appraise the current understanding of properties of RM through a comprehensive literature review and detailed laboratory investigations conducted on Indian RM by the authors, to assess and identify the potential engineering applications, and to finally discuss associated challenges in using it in practical applications. Physical, chemical, mineralogical and geotechnical properties of RMs of different origin and production processes are reviewed. Mechanisms behind the pozzolanic reaction of RM under different chemical and mineralogical compositional conditions are discussed. Environmental concerns associated with the use of RM are also raised. Studies relevant to leachability characteristics reveal that most of the measured chemical concentrations are within the permissible regulatory limits. Overall, the review shows that RM disposal and reuse is complicated by its extreme alkalinity, which is also noticed to be influencing multiple engineering properties. But with selected pH amendments, the treated RM is found to have significant potential to be used as an effective and sustainable geomaterial. The assessment is majorly based on the characteristics of Indian RMs; hence the adaptation of the findings to other RMs should be assessed on a case-by-case basis. Moreover, field studies demonstrating the performance of RM in various engineering applications are warranted. [GRAPHICS] .

Welcome to talk about 105-13-5, If you have any questions, you can contact Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH or send Email.. COA of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C8H10O2

Computed Properties of C8H10O2. In 2021 J ORG CHEM published article about FREE AEROBIC OXIDATION; SUPPORTED TEMPO; ASYMMETRIC SULFOXIDATION; BLOCK-COPOLYMERS; CATALYST; METAL; EFFICIENT; DEHYDROGENATION; ALDEHYDES in [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China; [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Minist Educ, Ecodyeing & Finishing Engn Res Ctr, Hangzhou 310018, Peoples R China; [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Natl Base Int Sci & Technol Cooperat Text & Consu, Hangzhou 310018, Peoples R China; [Shi, Yi; Cai, Fang] Zhejiang Cady Ind Co Ltd, Huzhou 313013, Peoples R China; [Yang, Guang; Hua, Zan] Anhui Agr Univ, Biomass Mol Engn Ctr, Dept Mat Sci & Engn, Hefei 230036, Peoples R China in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Polymeric nanoreactors in water fabricated by the self-assembly of amphiphilic copolymers have attracted much attention due to their good catalytic performance without using organic solvents. However, the disassembly and instability of relevant nanostructures often compromise their potential applicability. Herein, the preparation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-containing nanoreactors by the self-assembly of amphiphilic bottle-brush copolymers has been demonstrated. First, a macromonomer having a norbornenyl polymerizable group was prepared by RAFT polymerization of hydrophobic and hydrophilic monomers. The macromonomer was further subjected to ring-opening metathesis polymerization to produce an amphiphilic bottlebrush copolymer. Further, TEMPO, as a catalyst, was introduced into the hydrophobic block through the activated ester strategy. Finally, TEMPO-functionalized polymeric nanoreactors were successfully obtained by self-assembly in water. The nanoreactors exhibited excellent catalytic activities in selective oxidation of alcohols in water. More importantly, the reaction kinetics showed that the turnover frequency is greatly increased compared to that of the similar nanoreactor prepared from liner copolymers under the same conditions. The outstanding catalytic activities of the nanoreactors from bottlebrush copolymers could be attributed to the more stable micellar structure using the substrate concentration effect. This work presents a new strategy to fabricate stable nanoreactors, paving the way for highly efficient organic reactions in aqueous solutions.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome and Easy Science Experiments about (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L or send Email.

In 2021 ASIAN J ORG CHEM published article about CATALYZED SELECTIVE OXIDATION; AEROBIC OXIDATION; HYDROGEN-PEROXIDE; C-N; COPPER; METAL; ALDEHYDES; NANOPARTICLES; COMPLEXES; EFFICIENT in [Behera, Pradyota Kumar; Choudhury, Prabhupada; Sahu, Santosh Kumar; Sahu, Rashmi Ranjan; Rout, Laxmidhar] Berhampur Univ, Dept Chem, Berhampur 760007, Orissa, India; [Rout, Laxmidhar] IISER, Dept Chem, Berhampur 760010, Odisha, India; [Harvat, Alisha N.; McNulty, Caitlin; Stitgen, Abigail; Scanlon, Joseph] Ripon Coll, Ripon, WI 54971 USA; [Kar, Manoranjan] IIT Patna, Patna 801106, Bihar, India in 2021, Cited 113. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Application In Synthesis of (4-Methoxyphenyl)methanol

Though concept of oxygen bridged bimetallic catalyst for organic reaction is not well understood. Herein, we have tried to explain the concept by experimental as well as its support by full DFT study. We report here a competent protocol for dehydrogenative oxidation of benzylic alcohol using an oxygen bridged bimetallic CuMoO4 nano catalyst. Careful demonstration reveals that oxidation is not effective either with mono-metallic Cu (II) or Mo(VI); instead combination of both the metals through the oxygen bridge [Cu-O-Mo] unexpectedly and interestingly catalyzed the reaction efficiently. The new concept is strongly supported by computational DFT study. DFT study reveals dehydrogenative oxidation is preferred at copper centre over molybdenum and aromatic benzyl alcohols are greatly stabilised. Interaction barrier energy of monometallic CuO and MoO3 catalyst is much higher than bimetallic CuMoO4. Hydrogen transfer has larger barrier heights for CuO (31.5 kcal/mol) and MoO3 (40.3 kcal/mol) than bimetallic CuMoO4.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching C8H10O2

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM or send Email.

HPLC of Formula: C8H10O2. Authors Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM in AMER CHEMICAL SOC published article about in [Epifanov, Maxim; Mo, Jia Yi; Dubois, Rudy; Yu, Hao; Sammis, Glenn M.] Univ British Columbia, Dept Chem, Columbia, BC V6T 1Z1, Canada in 2021, Cited 48. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Kargar, H; Bazrafshan, M; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or send Email.. Safety of (4-Methoxyphenyl)methanol

In 2021 POLYHEDRON published article about AEROBIC OXIDATION; BENZYLIC ALCOHOLS; C-H; COPPER; ALDEHYDES; MILD in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Bazrafshan, Maryam; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Safety of (4-Methoxyphenyl)methanol

For the first time, two new oxovanadium and dioxomolybdenum Schiff base complexes, VOL(OMe) and MoO2L, were synthesized through the reaction of a ONO tridentate Schiff base ligand (H2L) derived from the condensation of 5-bromosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)(2) and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, H-1 NMR, C-13 NMR, elemental analysis (CHN) and the most authentic single crystal X-ray diffraction analysis (SC-XRD). The geometry around the central metal ion in MoO2L was distorted octahedral as revealed by the data collected from diffraction studies. Non-covalent interactions that are responsible for crystal packing are explored by Hirshfeld surface analysis. Theoretical calculations of the synthesized compounds, carried out by DFT at B3LYP/Def2-TZVP level of theory, indicated that the calculated results are in agreement with the experimental findings. Moreover, the catalytic activities of both complexes were investigated for the selective oxidation of benzylic alcohols using urea hydrogen peroxide (UHP) in acetonitrile. (C) 2021 Elsevier Ltd. All rights reserved.

Welcome to talk about 105-13-5, If you have any questions, you can contact Kargar, H; Bazrafshan, M; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or send Email.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Let`s talk about compound :C8H10O2

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Pandey, B; Xu, S; Ding, KY or send Email.

I found the field of Chemistry very interesting. Saw the article Switchable beta-alkylation of Secondary Alcohols with Primary Alcohols by a Well-Defined Cobalt Catalyst published in 2021. Safety of (4-Methoxyphenyl)methanol, Reprint Addresses Ding, KY (corresponding author), Middle Tennessee State Univ, Dept Chem, Murfreesboro, TN 37132 USA.; Ding, KY (corresponding author), Middle Tennessee State Univ, Mol Biosci Program, Murfreesboro, TN 37132 USA.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

beta-alkylation of secondary alcohols with primary alcohols to selectively generate alcohols by a well-defined Co catalyst is presented. Remarkably, a low catalyst loading of 0.7 mol % can be employed for the reaction. More significantly, this study represents the first Co-catalyzed switchable alcohol/ketone synthesis by simply manipulating the reaction parameters. In addition, the transformation is environmentally friendly, with water as the only byproduct.

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Pandey, B; Xu, S; Ding, KY or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or send Email.. Recommanded Product: 105-13-5

I found the field of Chemistry very interesting. Saw the article Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of alpha,beta-Unsaturated Carbonyl Compounds published in 2021. Recommanded Product: 105-13-5, Reprint Addresses Yoon, S (corresponding author), Chung Ang Univ, Dept Chem, Seoul 06974, South Korea.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h(-1)) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of alpha, beta-unsaturated carbonyl compounds.

Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or send Email.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About 105-13-5

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Name: (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Authors Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA in WILEY-V C H VERLAG GMBH published article about in [Ruiz-Castaneda, Margarita; Santos, Lucia; Manzano, Blanca R.; Jalon, Felix A.] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim IRICA, Avda CJ Cela 10, Ciudad Real 13071, Spain; [Espino, Gustavo] Univ Burgos, Fac Ciencias, Dept Quim, Plaza Misael Banuelos S-N, Burgos 09001, Spain in 2021, Cited 107. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Deuterium labeling is an interesting process that leads to compounds of use in different fields. We describe the transfer hydrogenation of aldehydes and the selective C-1 deuteration of the obtained alcohols in D2O, as the only deuterium source. Different aromatic, alkylic and alpha,beta-unsaturated aldehydes were reduced in the presence of [RuCl(p-cymene)(dmbpy)]BF4, (dmbpy=4,4 ‘-dimethyl-2,2 ‘-bipyridine) as the pre-catalyst and HCO2Na/HCO2H as the hydrogen source. Moreover, furfural and glucose, were selectively reduced to the valuable alcohols, furfuryl alcohol and sorbitol. The processes were carried out in neat water or in a biphasic water/toluene system. The biphasic system allowed easy recycling, higher yields, and higher selective D incorporation (using D2O/toluene). The deuteration took place due to an efficient effective M-H/D+ exchange from D2O that allows the inversion of polarity of D+ (umpolung). DFT calculations that explain the catalytic behavior in water are also included.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An update on the compound challenge: C8H10O2

Welcome to talk about 105-13-5, If you have any questions, you can contact Liu, YY; Xiong, J; Wei, L; Wan, JP or send Email.. Safety of (4-Methoxyphenyl)methanol

An article Switchable Synthesis of alpha,alpha-Dihalomethyl and alpha,alpha,alpha-Trihalomethyl Ketones by Metal-Free Decomposition of Enaminone C=C Double Bond WOS:000505916900001 published article about SELECTIVE SYNTHESIS; COUPLING REACTIONS; ALPHA; TRICHLOROMETHYL; CLEAVAGE; REDUCTION; ALKYNES; ALPHA,ALPHA-DIBROMOACETOPHENONES; TRIPHENYLPHOSPHINE; HYDROXYLATION in [Liu, Yunyun; Xiong, Jin; Wei, Li; Wan, Jie-Ping] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Jiangxi, Peoples R China in 2020, Cited 77. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Safety of (4-Methoxyphenyl)methanol

The novel free radical-based cleavage of the enaminone C=C double bond is realized by using N-halosuccinimides (NXS) in the presence of benzoyl peroxide (BPO) with mild heating, enabling the tunable synthesis of alpha,alpha-dihalomethyl ketones and alpha,alpha,alpha-trihalomethyl ketones under different reaction conditions. The formation of these divergent products involving featured C=C double bond cleavage requires no any metal reagent, and represents one more practical example on the synthesis of poly halogenated methyl ketones via the functionalization of carbon-carbon bond.

Welcome to talk about 105-13-5, If you have any questions, you can contact Liu, YY; Xiong, J; Wei, L; Wan, JP or send Email.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Get Up to Speed Quickly on Emerging Topics:(4-Methoxyphenyl)methanol

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K or send Email.

Safety of (4-Methoxyphenyl)methanol. Authors Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K in ROYAL SOC CHEMISTRY published article about in [Kon, Yoshihiro; Nakashima, Takuya; Yada, Akira; Fujitani, Tadahiro; Onozawa, Shun-ya; Kobayashi, Shu; Sato, Kazuhiko] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem, Tsukuba, Ibaraki 3058565, Japan; [Kobayashi, Shu] Univ Tokyo, Sch Sci, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan in 2021, Cited 41. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The oxidation of alcohols to aldehydes is a powerful reaction pathway for obtaining valuable fine chemicals used in pharmaceuticals and biologically active compounds. Although many oxidants can oxidize alcohols, only a few hydrogen peroxide oxidations can be employed to continuously synthesize aldehydes in high yields using a liquid-liquid two-phase flow reactor, despite the possibility of the application toward a safe and rapid multi-step synthesis. We herein report the continuous flow synthesis of (E)-cinnamaldehyde from (E)-cinnamyl alcohol in 95%-98% yields with 99% selectivity for over 5 days by the selective oxidation of hydrogen peroxide using a catalyst column in which Pt is dispersed in SiO2. The active species for the developed selective oxidation is found to be zero-valent Pt(0) from the X-ray photoelectron spectroscopy measurements of the Pt surface before and after the oxidation. Using Pt black diluted with SiO2 as a catalyst to retain the Pt(0) species with the optimal substrate and H2O2 introduction rate not only enhances the catalytic activity but also maintains the activity during the flow reaction. Optimizing the contact time of the substrate with Pt and H2O2 using a flow reactor is important to proceed with the selective oxidation to prevent the catalytic H2O2 decomposition.

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts