Interesting scientific research on 105-13-5

Name: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, JD; Cui, W; Chen, RM; He, Y; Yuan, CW; Sheng, JP; Li, JY; Zhan, YX; Dong, F; Sun, YJ or send Email.

Recently I am researching about FACILE SYNTHESIS; REACTANTS ACTIVATION; NO ADSORPTION; DOPED G-C3N4; EFFICIENT; NANOSHEETS; ZIRCONIA; REACTIVITY; VACANCIES; MECHANISM, Saw an article supported by the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21501016, 21822601, 21777011]; Innovative Research Team of Chongqing [CXTDG201602014, CXQT19023]; Natural Science Foundation of ChongqingNatural Science Foundation of Chongqing [cstc2017jcyjBX0052]; Plan for National Youth Talents of the Organization Department of the Central Committee. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Wang, JD; Cui, W; Chen, RM; He, Y; Yuan, CW; Sheng, JP; Li, JY; Zhan, YX; Dong, F; Sun, YJ. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Name: (4-Methoxyphenyl)methanol

Graphitic carbon nitride (g-C3N4, CN for short) is a compelling visible-light responsive photocatalyst. However, its photocatalytic efficiency is low due to the random carrier transfer in planes and insufficient redox potential. Herein, we build oxygen functional group modified sodium-doped carbon nitride (OH/Na co-functionalized carbon nitride) to promote directional transfer of charge carriers for acceleration of separation and enhance redox potential for efficient oxidation of NO in air. Specifically, the function of sodium atoms could control the directional transfer of random carriers from the intralayer to the oxygen functional group-modified surface for the purpose of effectively reducing photogenerated electron-hole recombination. Meanwhile, the modification by oxygen-containing functional groups could adjust the band structure of CN, thereby increasing the oxidation-reduction potential of NO in the photocatalyst. The transformation pathways and reaction mechanism of photocatalytic NO oxidation on CN and OH/Na co-functionalized carbon nitride have also been explicated by ESR spectroscopy and in situ DRIFTS and compared. This work provides a new method for simultaneously controlling the random transfer of carriers and adjusting the energy band structure of CN to optimize its photocatalytic efficiency. It is also possible to extend this strategy to improve the performance of other 2D layered catalysts for photocatalytic oxidation.

Name: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, JD; Cui, W; Chen, RM; He, Y; Yuan, CW; Sheng, JP; Li, JY; Zhan, YX; Dong, F; Sun, YJ or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. COA of Formula: C8H10O2

COA of Formula: C8H10O2. Authors Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY in WILEY-V C H VERLAG GMBH published article about in [Sung, Kihyuk; Lee, Mi-hyun; Cheong, Yeon-Joo; Kim, Yu Kwon; Yu, Sungju; Jang, Hye-Young] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Multi N-heterocyclic carbene(NHC)-modified iridium catalysts were employed in the beta-alkylation of alcohols; dimerization of primary alcohols (Guerbet reaction), cross-coupling of secondary and primary alcohols, and intramolecular cyclization of alcohols. Mechanistic studies of Guerbet reaction, including kinetic experiments, mass analysis, and density functional theory (DFT) calculation, were employed to explain the fast reaction promoted by bimetallic catalysts, and the dramatic reactivity increase of monometallic catalysts at the late stage of the reaction.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. COA of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Name: (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Authors Yao, HY; Wang, YS; Razi, MK in ROYAL SOC CHEMISTRY published article about in [Yao, Hongyan] Hebi Polytech, Deans Off, Hebi 458030, Peoples R China; [Wang, Yongsheng] Henan Polytech Univ, Sch Phys Sci Educ, Jiaozuo 454003, Henan, Peoples R China; [Razi, Maryam Kargar] Islamic Azad Univ, North Branch Tehran, Fac Chem, Tehran, Iran in 2021, Cited 82. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a magnetic asymmetric Salamo-based Zn complex (H2L = salen type di-Schiff bases)-supported on the surface of modified Fe3O4 (Fe3O4@H2L-Zn) as a new catalyst was designed and characterized via numerous analytical techniques such as FT-IR spectroscopy, XRD, EDS, ICP-AES, SEM, TEM, TGA and VSM. An efficient and sustainable synthetic protocol has been presented for the synthesis of silyl ether substructures via the silyl protection of alcohols under mild conditions. The synthetic protocol involves a two-component solvent-free reaction between various hydroxyl-bearing substrates and hexamethyldisilazane (HMDS) as an inexpensive silylating agent using Fe3O4@H2L-Zn MNPs as a magnetically separable, recyclable and reusable heterogeneous catalyst. Fe3O4@H2L-Zn MNPs were also applied for the removal of silyl protecting groups from hydroxyl functions using water in CH2Cl2 under green conditions. The catalyst demonstrated good to excellent catalytic yield efficiency for both the reactions compared to the commercial metal-based catalysts under green conditions for a wide range of substrates.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE or send Email.. Application In Synthesis of (4-Methoxyphenyl)methanol

Authors Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE in ACADEMIC PRESS INC ELSEVIER SCIENCE published article about ECOSYSTEM SERVICES; PHYSICAL-ACTIVITY; RESIDENTIAL GREENNESS; OBESITY; SPACE; WALKING; HEALTH; COHORT; CLASSIFICATION; ACCESSIBILITY in [Tsai, Wei-Lun; Rosenbaum, Daniel J.; Prince, Steven E.; Neale, Anne C.; Buckley, Timothy J.; Jackson, Laura E.] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA; [Nash, Maliha S.] US EPA, Off Res & Dev, Newport, OR USA; [D’Aloisio, Aimee A.] Social & Sci Syst, Durham, NC USA; [Sandler, Dale P.] NIEHS, POB 12233, Res Triangle Pk, NC 27709 USA in 2021, Cited 72. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Excess body weight is a risk factor for many chronic diseases. Studies have identified neighborhood greenery as supportive of healthy weight. However, few have considered plausible effect pathways for ecosystem services (e. g., heat mitigation, landscape aesthetics, and venues for physical activities) or potential variations by climate. This study examined associations between weight status and neighborhood greenery that capture ecosystem services most relevant to weight status across 28 U.S. communities. Weight status was defined by body mass index (BMI) reported for 6591 women from the U.S. Sister Study cohort. Measures of greenery within street and circular areas at 500 m and 2000 m buffer distances from homes were derived for each participant using 1 m land cover data. Street area was defined as a 25 m-wide zone on both sides of street centerlines multiplied by the buffer distances, and circular area was the area of the circle centered on a home within each of the buffer distances. Measures of street greenery characterized the pedestrian environment to capture physically and visually accessible greenery for shade and aesthetics. Circular greenery was generated for comparison. Greenery types of tree and herbaceous cover were quantified separately, and a combined measure of tree and herbaceous cover (i.e., aggregate greenery) was also included. Mixed models accounting for the clustering at the community level were applied to evaluate the associations between neighborhood greenery and the odds of being overweight or obese (BMI > 25) with adjustment for covariates selected using gradient boosted regression trees. Analyses were stratified by climate zone (arid, continental, and temperate). Tree cover was consistently associated with decreased odds of being overweight or obese. For example, the adjusted odds ratio [AOR] was 0.92, 95% Confidence Interval [CI]: 0.88-0.96, given a 10% increase in street tree cover at the 2000 m buffer across the 28 U.S. communities. These associations held across climate zones, with the lowest AOR in the arid climate (AOR: 0.74, 95% CI: 0.54-1.01). In contrast, associations with herbaceous cover varied by climate zone. For the arid climate, a 10% increase in street herbaceous cover at the 2000 m buffer was associated with lower odds of being overweight or obese (AOR: 0.75, 95% CI: 0.55-1.03), whereas the association was reversed for the temperate climate, the odds increased (AOR: 1.19, 95% CI: 1.05-1.35). Associations between greenery and overweight/obesity varied by type and spatial context of greenery, and climate. Our findings add to a growing body of evidence that greenery design in urban planning can support public health. These findings also justify further defining the mechanism that underlies the observed associations.

Welcome to talk about 105-13-5, If you have any questions, you can contact Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE or send Email.. Application In Synthesis of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :(4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Kargar, H; Bazrafshan, M; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Bazrafshan, Maryam; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan published Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity of novel oxovanadium and dioxomolybdenum complexes with ONO tridentate Schiff base ligand in 2021, Cited 56. Name: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

For the first time, two new oxovanadium and dioxomolybdenum Schiff base complexes, VOL(OMe) and MoO2L, were synthesized through the reaction of a ONO tridentate Schiff base ligand (H2L) derived from the condensation of 5-bromosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)(2) and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, H-1 NMR, C-13 NMR, elemental analysis (CHN) and the most authentic single crystal X-ray diffraction analysis (SC-XRD). The geometry around the central metal ion in MoO2L was distorted octahedral as revealed by the data collected from diffraction studies. Non-covalent interactions that are responsible for crystal packing are explored by Hirshfeld surface analysis. Theoretical calculations of the synthesized compounds, carried out by DFT at B3LYP/Def2-TZVP level of theory, indicated that the calculated results are in agreement with the experimental findings. Moreover, the catalytic activities of both complexes were investigated for the selective oxidation of benzylic alcohols using urea hydrogen peroxide (UHP) in acetonitrile. (C) 2021 Elsevier Ltd. All rights reserved.

Name: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

More research is needed about 105-13-5

Computed Properties of C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Babu, R; Subaramanian, M; Midya, SP; Balaraman, E or send Email.

An article Nickel-Catalyzed Guerbet Type Reaction: C-Alkylation of Secondary Alcohols via Double (de)Hydrogenation WOS:000649477300018 published article about N-HETEROCYCLIC CARBENE; CROSS-COUPLING REACTIONS; BETA-ALKYLATION; ALPHA-ALKYLATION; BORROWING HYDROGEN; METHYL KETONES; IRIDIUM; COMPLEXES in [Babu, Reshma; Subaramanian, Murugan; Midya, Siba P.; Balaraman, Ekambaram] Indian Inst Sci Educ & Res IISER Tirupati, Dept Chem, Tirupati 517507, Andhra Pradesh, India in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Computed Properties of C8H10O2

Acceptorless double dehydrogenative cross-coupling of secondary and primary alcohols under nickel catalysis is reported. This Guerbet type reaction provides an atom- and a step-economical method for the C-alkylation of secondary alcohols under mild, benign conditions. A broad range of substrates including aromatic, cyclic, acyclic, and aliphatic alcohols was well tolerated. Interestingly, the C-alkylation of cholesterol derivatives and the double C-alkylation of cyclopentanol with various alcohols were also demonstrated.

Computed Properties of C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Babu, R; Subaramanian, M; Midya, SP; Balaraman, E or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Something interesting about 105-13-5

Quality Control of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or send Email.

An article Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach WOS:000664333800072 published article about NITROGEN-HETEROCYCLES; ELECTRONIC-STRUCTURES; COMPLEXES; OXIDATION; HYDROGENATION; REACTIVITY in [Das, Siuli; Mondal, Rakesh; Chakraborty, Gargi; Guin, Amit Kumar; Paul, Nanda D.] Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, India; [Das, Abhishek] Indian Assoc Cultivat Sci, Sch Chem Sci, Kolkata 700032, India in 2021, Cited 79. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Quality Control of (4-Methoxyphenyl)methanol

Herein we report an exclusively ligand-centered redox controlled approach for the dehydrogenation of a variety of N-heterocycles using a Zn(II)-stabilized azo-anion radical complex as the catalyst. A simple, easy-to-prepare, and bench-stable Zn(II)-complex (1b) featuring the tridentate arylazo pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline, in the presence of zinc-dust, undergoes reduction to form the azo-anion radical species [1b]which efficiently dehydrogenates various saturated N-heterocycles such as 1,2,3,4-tetrahydro-2-methylquinoline, 1,2,3,4-tetrahydro-isoquinoline, indoline, 2-phenyl-2,3-dihydro-1H-benzoimidazole, 2,3-dihydro-2-phenylquinazolin-4(1H)-one, and 1,2,3,4-tetrahydro-2-phenylquinazolines, among others, under air. The catalyst has further been found to be compatible with the cascade synthesis of these N-heterocycles via dehydrogenative coupling of alcohols with other suitable coupling partners under air. Mechanistic investigation reveals that the dehydrogenation reactions proceed via a one-electron hydrogen atom transfer (HAT) pathway where the zinc-stabilized azo-anion radical ligand abstracts the hydrogen atom from the organic substrate(s), and the whole catalytic cycle proceeds via the exclusive involvement of the ligand-centered redox events where the zinc acts only as the template.

Quality Control of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Top Picks: new discover of (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Yang, SN; Liu, XY; Lu, SJ; Li, Z; Zhang, YM; Yu, SN; Song, J; Ding, CF; Yang, HY or send Email.. Computed Properties of C8H10O2

Computed Properties of C8H10O2. Authors Yang, SN; Liu, XY; Lu, SJ; Li, Z; Zhang, YM; Yu, SN; Song, J; Ding, CF; Yang, HY in WILEY-V C H VERLAG GMBH published article about in [Yang, Shouning; Yu, Shaoning; Yang, Huayan] Ningbo Univ, Sch Mat Sci & Chem Engn, Inst Mass Spectrometry, Zhejiang Prov Key Lab Adv Mass Spectrometry & Mol, Ningbo 315211, Zhejiang, Peoples R China; [Zhang, Yanmin; Song, Jian] Henan Normal Univ, Sch Phys, Xinxiang 453007, Henan, Peoples R China; [Yang, Shouning; Liu, Xiaoyang; Lu, Sijia; Li, Zhuo; Yang, Huayan] Henan Normal Univ, Collaborat Innovat Ctr Henan Prov Green Mfg Fine, Key Lab Green Chem Media & React, Minist Educ,Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China in 2021, Cited 65. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The development of eco-friendly and low cost catalysts is challenging. Here, heterostructures of Bi2S3 quantum dots (QDs) doped onto ultrathin BiOCl nanosheets were synthesized by a facile hydrothermal method to exploit efficient photosensitizers with appropriate electronic states to enhance the transfer of electrons. The obtained Bi2S3-BiOCl showed highly efficient photocatalytic ability for selective oxidation of aromatic alcohols to aldehydes. More oxygen vacancies are formed on the exposed 001 facet of the ultrathin BiOCl, which can effectively trap electrons and form O-.(2)- radicals. The cooperation between the BiOCl and the Bi2S3 QDs effectively separates photogenerated electron-hole pairs at the heterointerface and facilitates the cooperative actions of O-.(2)- radicals and holes, which brings about a desirable photocatalytic eciency for the selective oxidation of aromatic alcohols. This work highlights the synergistic effect of semiconductor QDs and two-dimensional materials on selective conversion processes and provides a new design paradigm using noble metal-free heteromaterials with high photocatalytic activity. This opens new possibilities for photocatalyst design using heteromaterials with high photocatalytic activity.

Welcome to talk about 105-13-5, If you have any questions, you can contact Yang, SN; Liu, XY; Lu, SJ; Li, Z; Zhang, YM; Yu, SN; Song, J; Ding, CF; Yang, HY or send Email.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Properties and Exciting Facts About (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Shen, YM; Xue, Y; Yan, M; Mao, HL; Cheng, H; Chen, Z; Sui, ZW; Zhu, SB; Yu, XJ; Zhuang, JL or send Email.. Safety of (4-Methoxyphenyl)methanol

Authors Shen, YM; Xue, Y; Yan, M; Mao, HL; Cheng, H; Chen, Z; Sui, ZW; Zhu, SB; Yu, XJ; Zhuang, JL in ROYAL SOC CHEMISTRY published article about CONJUGATED MICROPOROUS POLYMERS; AEROBIC OXIDATION; ORGANIC FRAMEWORKS; CATALYTIC-SYSTEM; SUPPORTED TEMPO; CORE-SHELL; SPHERES; DESIGN in [Shen, Yan-Ming; Xue, Yun; Yan, Mi; Mao, Hui-Ling; Cheng, Hu; Chen, Zhuo; Yu, Xiu-Jun; Zhuang, Jin-Liang] Guizhou Normal Univ, Key Lab Funct Mat Chem Guizhou Prov, Sch Chem & Mat Sci, 116 Baoshan Rd North, Guiyang 550001, Peoples R China; [Sui, Zhi-Wei] Natl Inst Metrol, Ctr Adv Measurement Sci, Beijing, Peoples R China; [Zhu, Shao-Bin; Zhuang, Jin-Liang] NanoFCM INC, Xiamen Pioneering Pk Overseas Chinese Scholars, Xiamen 361005, Peoples R China; [Yu, Xiu-Jun] Goethe Univ Frankfurt, Inst Inorgan & Analyt Chem, Max von Laue Str 7, D-60438 Frankfurt, Germany in 2021, Cited 34. Safety of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A bottom-up approach was developed to prepare TEMPO radical decorated hollow aromatic frameworks (HPAF-TEMPO) by using TEMPO radical functionalized monomers and SiO2 nanospheres as templates. The accessible inner layer, high density of TEMPO sites, and hybrid micro-/mesopores of the HPAF-TEMPO enable the aerobic oxidation of a broad range of alcohols with high efficiency and excellent selectivity.

Welcome to talk about 105-13-5, If you have any questions, you can contact Shen, YM; Xue, Y; Yan, M; Mao, HL; Cheng, H; Chen, Z; Sui, ZW; Zhu, SB; Yu, XJ; Zhuang, JL or send Email.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of C8H10O2

Welcome to talk about 105-13-5, If you have any questions, you can contact Tao, J; Jatoi, A; Crawford, J; Lam, WWT; Ho, JC; Wang, XF; Pang, H or send Email.. Safety of (4-Methoxyphenyl)methanol

Safety of (4-Methoxyphenyl)methanol. Recently I am researching about GROWTH-FACTOR-I; GLYCEMIC LOAD; SCREENING TRIAL; MEAT MUTAGENS; HEME IRON; PROSTATE; INDEX; INSULIN; VALUES; FIBER, Saw an article supported by the National Institutes of Health (NIH), Genes, Environment and Health Initiative (GEI)United States Department of Health & Human ServicesNational Institutes of Health (NIH) – USANIH National Institute of Neurological Disorders & Stroke (NINDS) [Z01 CP 010200, NIH U01 HG004446, NIH GEI U01 HG 004438]; University Postgraduate Fellowship by the HKU Foundation. Published in ELSEVIER IRELAND LTD in CLARE ,Authors: Tao, J; Jatoi, A; Crawford, J; Lam, WWT; Ho, JC; Wang, XF; Pang, H. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Objectives: Inconsistent findings have been reported on the link between dietary carbohydrates and lung cancer. This study aims to comprehensively evaluate the role of dietary carbohydrates on lung cancer risk. Materials and methods: The prospective study is based on the PLCO trial, which recruited 113,096 eligible participants across the United States. Participants had to have completed baseline and diet history questionnaires. The incidence of lung cancer was acquired through self-report and medical record follow-up. A multivariable logistic model adjusted for confounders was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) of dietary carbohydrates, fiber, whole grains, glycemic index (GI) and glycemic load (GL) for lung cancer. Similar methods were applied in analyzing the carbohydrates and fiber from different food sources. Multinomial logistic models were used for sensitivity analysis with lung cancer subtypes as outcomes. Results: Dietary carbohydrates and GL were inversely associated with lung cancer incidence in the PLCO population. Among various carbohydrates, 30-g daily consumption of dietary fiber was related to a lower risk of lung cancer (fourth vs first quartile OR: 0.62, 95 % CI: 0.54-0.72) compared with 8.8-g. Furthermore, consuming whole grains 2.3 servings per day as opposed to 0.3 servings per day was associated with a lower risk of lung cancer (OR: 0.73, 95 % CI: 0.64-0.83). A higher risk of lung cancer was seen for the consumption of high-GI food (OR: 1.19, 95 % CI: 1.05?1.35) and refined carbohydrates from soft drinks (OR: 1.23, 95 % CI: 1.04?1.46). Conclusion: Carbohydrates and fiber from fruits, vegetables and whole grains are associated with lower lung cancer risk. Refined carbohydrates from processed food, such as soft drinks, appear to increase risk.

Welcome to talk about 105-13-5, If you have any questions, you can contact Tao, J; Jatoi, A; Crawford, J; Lam, WWT; Ho, JC; Wang, XF; Pang, H or send Email.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts