Phumnok, Ekaroek et al. published their research in ACS Omega in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 111-46-6

Preparation of Natural Rubber Composites with High Silica Contents Using a Wet Mixing Process was written by Phumnok, Ekaroek;Khongprom, Parinya;Ratanawilai, Sukritthira. And the article was included in ACS Omega in 2022.Application of 111-46-6 This article mentions the following:

A wet mixing process is proposed for filled rubber composites with a high silica loading to overcome the drawbacks of high energy consumption and workplace contamination of the conventional dry mixing process. Ball milling was adopted for preparing the silica dispersion because it has a simple structure, is easy to operate, and is a low-cost process that can be easily scaled up for industrial production The response surface methodol. was used to optimize the making of the silica dispersion. The optimum conditions for a well-dispersed silica suspension with the smallest silica particle size of 4.9 mm were an about 22% silica content and 62 h of ball milling. The effects of dry and wet mixing methods on the properties of silica-filled rubber composites were investigated in a broad range of silica levels from low to high loadings. The mixing method choice had little impact on the properties of rubber composites with low silica loadings. The silica-filled rubber demonstrated in this study, however, shows superior characteristics over the rubber composite prepared with conventional dry mixing, particularly with high silica loadings. When compared to silica-filled natural rubbers prepared by dry mixing (dry silica rubber, DSR), the wet mixing (for WSR) produced smaller silica aggregates with better dispersion. Due to the shorter heat history, the WSR exhibits superior curing characteristics such as a longer scorch time (2.2-3.3 min for WSR and 1.0-2.1 min for DSR) and curing time (4.1-4.5 min for WSR and 2.2-3.1 min for DSR). Addnl., the WSR has superior mech. properties (hardness, modulus, tensile strength, and especially the elongation at break (420-680% for WSR and 360-620% DSR)) over the DSR. The rolling resistance of WSR is lower than that of DSR. However, the reversed trend on the wet skid resistance is observed In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Application of 111-46-6).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 111-46-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Bang-Jin et al. published their research in Molecules in 2019 | CAS: 5856-63-3

(R)-2-Aminobutan-1-ol (cas: 5856-63-3) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C4H11NO

An enantioselective potentiometric sensor for 2-amino-1-butanol based on chiral porous organic cage CC3-R was written by Wang, Bang-Jin;Duan, Ai-Hong;Zhang, Jun-Hui;Xie, Sheng-Ming;Cao, Qiu-E.;Yuan, Li-Ming. And the article was included in Molecules in 2019.Synthetic Route of C4H11NO This article mentions the following:

Porous organic cages (POCs) have attracted extensive attention due to their unique structures and tremendous application potential in numerous areas. In this study, an enantioselective potentiometric sensor composed of a polyvinyl chloride (PVC) membrane electrode modified with CC3-R POC material was used for the recognition of enantiomers of 2-amino-1-butanol. After optimization, the developed sensor exhibited enantioselectivity toward S-2-amino-1-butanol (log KPotS,R = -0.98) with acceptable sensitivity, and a near-Nernstian response of 25.8 卤 0.3 mV/decade within a pH range of 6.0-9.0. In the experiment, the researchers used many compounds, for example, (R)-2-Aminobutan-1-ol (cas: 5856-63-3Synthetic Route of C4H11NO).

(R)-2-Aminobutan-1-ol (cas: 5856-63-3) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C4H11NO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sampaolesi, Sofia et al. published their research in Food Chemistry: X in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Synthetic Route of C4H10O4

The synthesis of soluble and volatile bioactive compounds by selected brewer鈥瞫 yeasts: Antagonistic effect against enteropathogenic bacteria and food spoiler – toxigenic Aspergillus sp. was written by Sampaolesi, Sofia;Briand, Laura E.;De Antoni, Graciela;Leon Pelaez, Angela. And the article was included in Food Chemistry: X in 2022.Synthetic Route of C4H10O4 This article mentions the following:

Contamination by Aspergillus sp. and the accumulation of its mycotoxins in food and beverages have a high impact on human health and food safety. This investigation inquires the ability of brewer鈥瞫 yeasts discarded after fermentation (brewing fermentation residue, BFR) to synthesize bioactive compounds and to biocontrol Aspergillus sp. BFRs of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 proved to have bacteriostatic properties and to be efficient in fungal growth reduction, decreasing the growth rate of Aspergillus flavus and Aspergillus parasiticus up to 37.8% and 42.5%, resp. Fungal mycelium degradation along with absentia of conidia was detected near the yeast inoculum. Moreover, the yeasts synthesize volatile bioactive compounds that extend Aspergillus sp. lag phase above 100% and decrease fungal growth rates from 20% towards 44%, along with the complete inhibition of conidia synthesis. These results indicate the potential of this residue to be used in biocontrol applications in the food industry. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Synthetic Route of C4H10O4).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Synthetic Route of C4H10O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pal, Nabhendu et al. published their research in Dalton Transactions in 2019 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 29364-29-2

Transfer of hydrosulfide from thiols to iron(II): a convenient synthetic route to nonheme diiron(II)-hydrosulfide complexes was written by Pal, Nabhendu;Majumdar, Amit. And the article was included in Dalton Transactions in 2019.Recommanded Product: 29364-29-2 This article mentions the following:

While the attempted synthesis of diiron(II)-hydrosulfide complexes using HS produced an insoluble precipitate, the reaction of Fe(BF4)2路6H2O, Et3N and HN-Et-HPTB with RSH (R = tBu, CH2Ph) yielded the desired complex, [Fe2(N-Et-HPTB)(SH)(H2O)](BF4)2 (1a). The synthesis, one electron oxidation and dioxygen activity of 1a in comparison with an analogous chloride complex, [Fe2(N-Et-HPTB)(Cl)(DMF)2](BF4)2 (2), are described. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Recommanded Product: 29364-29-2).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 29364-29-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Salem, Mohamed Z. M. et al. published their research in International Biodeterioration & Biodegradation in 2016 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 2451-01-6

Evaluation of usage three natural extracts applied to three commercial wood species against five common molds was written by Salem, Mohamed Z. M.;Zidan, Yassin E.;El Hadidi, Nesrin M. N.;Mansour, Maisa M. A.;Abo Elgat, Wael A. A.. And the article was included in International Biodeterioration & Biodegradation in 2016.Recommanded Product: 2451-01-6 This article mentions the following:

Natural extracts have become of high interest in the past ten years for their inhibiting the growth of molds over wood and wood products surfaces in service or during the storage of building materials. In the present study, the antifungal effects of three natural extracts applied to three woods against five common molds were assessed. The growth of fungal hyphae of Alternaria alternata, Fusarium subglutinans, Chaetomium globosum, Aspergillus niger, and Trichoderma viride on the surfaces of Pinus sylvestris, Pinus rigida and Fagus sylvatica woods treated with extracts of Pinusrigida (heartwood), Eucalyptus camaldulensis (leaves) and Costus speciosus (rhizomes) was visually estimated GC/MS and FTIR analyses were used to identify the chem. constituents and the functional groups of extracts a-terpineol (24.91%), borneol (10.95%), terpin hydrate (9.60%), D-fenchyl alc. (5.99%), and limonene glycol (5.05%), which are the main constituents of P. rigida heartwood methanol extract The main chem. compounds of methanol extract from Eucalyptuscamaldulensis leaves were spathulenol (18.89%), cryptone (5.79%), 4,6,6-trimethyl-2-(3-methylbuta-1,3-dienyl)-3-oxatricyclo[5.1.0.0(2,4)]octane (5.79%), (3,3-dimethylcyclohexylidene)-(E)-acetaldehyde (5.57%), and ascaridole (4.32%). The main constituents identified in the distilled water extract from Costusspeciosus rhizomes were meso-erythritol (12.21%), methyl-2-methyl-1,3-oxothiolan-2-yl-ketone (11.61%), (all-Z)-5,8,11,14,17-eicosapentaenoic acid-Me ester (9.74%), diosgenin (5.07%), 2-ethyl-3-hydroxy-4H-pyran-4-one (4.43%), 3′,4′,7-trimethylquercetin (3.17%), and digitoxin (2.77%). Wood specimens treated at the level of 2% concentration of P. rigida heartwood extract observed good inhibition to the mold growth under laboratory conditions. These findings support the potential use of natural extracts for natural wood protection against mold infestation for surface treatment of wood. The results indicate that wood extracts may be useful for reducing the incidence of mold on wood products, but none of the materials evaluated completely inhibited the test fungi. These extracts may provide a useful value-added application for byproducts of lumber production from these species. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Recommanded Product: 2451-01-6).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 2451-01-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bernabeu-Roda, Lydia M. et al. published their research in Methods in Molecular Biology (New York, NY, United States) in 2021 | CAS: 137-08-6

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate

Analyzing the Effect of Strigolactones on the Motility Behavior of Rhizobia was written by Bernabeu-Roda, Lydia M.;Lopez-Raez, Juan Antonio;Soto, Maria J.. And the article was included in Methods in Molecular Biology (New York, NY, United States) in 2021.Recommanded Product: Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate This article mentions the following:

In the Rhizobium-legume symbiosis, strigolactones (SLs) promote root nodule formation; however, the exact mechanism underlying this pos. effect remains unknown. The recent finding that an SL receptor legume mutant shows a wild-type nodulation phenotype suggests that SLs influence the symbiosis by acting on the bacterial partner. In agreement with this, the application of the synthetic SL analog GR24 on the alfalfa symbiont Sinorhizobium (Ensifer) meliloti has been shown to stimulate swarming, a specialized bacterial surface motility, which could influence infection of legumes by Rhizobia. Surface motility assays for many bacteria, and particularly for Rhizobia, are challenging. The establishment of protocols to study bacterial surface motility is key to decipher the role of SLs as rhizosphere cues for rhizobacteria. In this chapter, we describe a set of protocols implemented to study the different types of motility exhibited by S. meliloti. In the experiment, the researchers used many compounds, for example, Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6Recommanded Product: Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate).

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xie, Jin et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2017 | CAS: 94022-96-5

2-(Trifluoromethyl)phenethyl alcohol (cas: 94022-96-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of 2-(Trifluoromethyl)phenethyl alcohol

Antiproliferative activity and SARs of caffeic acid esters with mono-substituted phenylethanols moiety was written by Xie, Jin;Yang, Fengzhi;Zhang, Man;Lam, Celine;Qiao, Yixue;Xiao, Jia;Zhang, Dongdong;Ge, Yuxuan;Fu, Lei;Xie, Dongsheng. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2017.Quality Control of 2-(Trifluoromethyl)phenethyl alcohol This article mentions the following:

A series of caffeic acid phenylethyl ester (CAPE) derivatives with mono-substituted phenylethanols moiety were synthesized and evaluated by MTT assay on growth of 4 human cancer cell lines (Hela, DU-145, MCF-7 and ECA-109). The substituent effects on the antiproliferative activity were systematically investigated for the first time. It was found that electron-donating and hydrophobic substituents at 2′-position of phenylethanol moiety could significantly enhance CAPE’s antiproliferative activity. 2′-Propoxyl derivative, as a novel caffeic acid ester, exhibited exquisite potency (IC50 = 0.4 卤 0.02 & 0.6 卤 0.03 渭M against Hela and DU-145 resp.). In the experiment, the researchers used many compounds, for example, 2-(Trifluoromethyl)phenethyl alcohol (cas: 94022-96-5Quality Control of 2-(Trifluoromethyl)phenethyl alcohol).

2-(Trifluoromethyl)phenethyl alcohol (cas: 94022-96-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of 2-(Trifluoromethyl)phenethyl alcohol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kargar, Hadi et al. published their research in Inorganica Chimica Acta in 2021 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C7H6Cl2O

Novel oxovanadium and dioxomolybdenum complexes of tridentate ONO-donor Schiff base ligand: Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity for the selective oxidation of benzylic alcohols was written by Kargar, Hadi;Forootan, Pooran;Fallah-Mehrjardi, Mehdi;Behjatmanesh-Ardakani, Reza;Amiri Rudbari, Hadi;Shahzad Munawar, Khurram;Ashfaq, Muhammad;Nawaz Tahir, Muhammad. And the article was included in Inorganica Chimica Acta in 2021.Synthetic Route of C7H6Cl2O This article mentions the following:

Two new oxovanadium and dioxomolybdenum Schiff base complexes, [VVO(L)(OCH3)(CH3OH)] and [MoVIO2(L)(CH2CH3OH)], were synthesized by treating an ONO-donor type Schiff base ligand (H2L) derived by condensation of 5-nitrosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)2 and MoO2(acac)2], resp. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, multinuclear (1H, 13C) NMR, elemental anal. and the most authentic single crystal X-ray diffraction anal. In both complexes the geometry around the central metal ions was distorted octahedral as revealed by the data collected from diffraction studies. Theor. calculation of the synthesized compounds were carried out by DFT as well as TD-DFT using B3LYP method by employing the Def2-TZVP basis set. The findings of theor. data indicated that the calculated results are in accordance with the exptl. findings. Moreover, the catalytic efficiencies of both complexes were investigated by oxidizing the benzylic alcs. in the presence of urea hydrogen peroxide (UHP) in acetonitrile. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Synthetic Route of C7H6Cl2O).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C7H6Cl2O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, Rongrong et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 3391-86-4

Cutting root treatment combined with low-temperature storage regimes on non-volatile and volatile compounds of Oudemansiella raphanipes was written by Xia, Rongrong;Wang, Zicheng;Xu, Heran;Hou, Zhenshan;Li, Yunting;Wang, Yafei;Feng, Yao;Zhang, Xiang;Xin, Guang. And the article was included in LWT–Food Science and Technology in 2022.Reference of 3391-86-4 This article mentions the following:

Oudemansiella raphanipes (O. raphanipes) has recently been gaining popularity due to its active and flavor compounds In this study, the profiles of phenolics, flavonoids, non-volatile and volatile compounds of fresh O. raphanipes were subjected to cutting root (CR) and pulling root (PR) harvesting methods during different storage temperatures (5掳C and 20掳C) were investigated. The results showed that CR treatment effectively increased phenolic and flavonoid contents, maintained the sensory scores and the umami value based on e-tongue, increased more C8 volatile contents, and inhibited off-flavor acids production during 5掳C storage. The EUC values of the fresh O. raphanipes ranged from 4.72 to 23.66 g monosodium glutamate (MSG) 100 g-1, which TAVs were at a relatively high level in CR treatment than in PR treatment. A two-way anal. of variance (ANOVA) and principal component anal. (PCA) revealed statistically significant differences in different harvesting methods that affected the mushroom flavor. Eleven components were screened as taste characteristics contributors by partial least squares regression model (PLS-R) anal., including Glu, umami nucleotides, and 1-octene-3-ol and 3-octanone. Thus, the cutting root treatment is a promising method for obtaining the high flavor quality of fresh O. raphanipes during cooling storage. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Reference of 3391-86-4).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 3391-86-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Passera, Alessandro et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 120121-01-9

The Manganese(I)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones: Disclosing the Macrocylic Privilege was written by Passera, Alessandro;Mezzetti, Antonio. And the article was included in Angewandte Chemie, International Edition in 2020.SDS of cas: 120121-01-9 This article mentions the following:

The bis(carbonyl) manganese(I) complex [Mn(CO)2(ligand)]Br with a chiral (NH)2P2 macrocyclic ligand catalyzes the asym. transfer hydrogenation of polar double bonds with 2-propanol as the hydrogen source. Ketones (43 substrates) are reduced to alcs. in high yields (up to >99%) and with excellent enantioselectivities (90-99% ee). A stereochem. model based on attractive CH-蟺 interactions is proposed. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9SDS of cas: 120121-01-9).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 120121-01-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts