Dong, Zhe team published research on Nature (London, United Kingdom) in 2021 | 16545-68-9

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Formula: C3H6O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 16545-68-9, formula is C3H6O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Formula: C3H6O

Dong, Zhe;MacMillan, David W. C. research published 《 Metallaphotoredox-enabled deoxygenative arylation of alcohols》, the research content is summarized as follows. Metal-catalyzed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcs. remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcs. would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcs. must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of com. available, structurally diverse alcs. as coupling partners4. Authors report herein a metallaphotoredox-based cross-coupling platform in which free alcs. are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcs. as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technol. represents a general strategy for the merger of in situ alc. activation with transition metal catalysis.

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Formula: C3H6O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts