Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol
Dong, Hua;Chen, Shan;Zhu, Jianxun;Gao, Ke;Zha, Wenlong;Lin, Pengcheng;Zi, Jiachen research published 《 Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20》, the research content is summarized as follows. Yeast has been widely used for large-scale production of terpenoids. In yeast, modifications of terpenoid biosynthetic pathways have been intensively studied. tHMG1 (encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase of yeast) and UPC2-1 (the G888D mutant of UPC2 encoding a transcription factor) were integrated into yeast chromosome, and ERG9 (the squalene synthase gene of yeast) was knocked down to yield the chassis strain DH02. A F96C mutation in ERG20 (farnesyl diphosphate synthase of yeast) was conducted to obtain mERG20 which can function as a geranylgeranyl diphosphate synthase (GGPS). Then, three fused genes, including BTS1 (the yeast innate GGPS)-ERG20, ERG20-mERG20 and mERG20-ERG20, were constructed, and expressed either by the pESC-based plasmids in DH02, or by being integrated into DH02 chromosome. The highest geranylgeraniol (GGOH) content was observed in the extracts of DH12 integrated with ERG20-mERG20, corresponding to 3.2 and 2.3 folds of those of the strains integrated with BTS1 and mERG20, resp. Finally, three genes encoding nor-copalyl diphosphate synthase (nor-CPS), ent-CPS and syn-CPS were integrated into the chromosome of DH12, resp., to construct yeasts for producing corresponding copalyl diphosphates (CPPs). Thus, a yeast-based platform was built for characterizing all types of diterpene synthases using GGPP or various CPPs as their substrates.
Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.
Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts