Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Reference of 7748-36-9
Chen, Zhixiang;Jiang, Yongwen;Zhang, Li;Guo, Yinlong;Ma, Dawei research published 《 Oxalic Diamides and tert-Butoxide: Two Types of Ligands Enabling Practical Access to Alkyl Aryl Ethers via Cu-Catalyzed Coupling Reaction》, the research content is summarized as follows. A robust and practical protocol for preparing alkyl aryl ethers has been developed, which relies on using two types of ligands to promote Cu-catalyzed alkoxylation of (hetero)aryl halides. The reaction scope is very general for a variety of coupling partners, particularly for challenging secondary alcs. and (hetero)aryl chlorides. In case of coupling with aryl chlorides and bromides, two oxalic diamides serve as the powerful ligands. The tert-butoxide is first demonstrated as a ligand for Cu-catalyzed coupling reaction, leading to alkoxylation of aryl iodides complete at room temperature Addnl., a number of carbohydrate derivatives are applicable for this coupling reaction, affording the corresponding carbohydrate-aryl ethers in 29-98% yields.
Reference of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts