Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: Oxetan-3-ol
Born, Max;Fessard, Thomas C.;Goettemann, Lucas;Plank, Jakob;Klapoetke, Thomas M. research published 《 A GAP Replacement, Part 2: Preparation of Poly(3-azidooxetane) via Azidation of Poly(3-tosyloxyoxetane) and Poly(3-mesyloxyoxetane)》, the research content is summarized as follows. Despite the variety of energetic polyoxetane binders, the oxirane-based glycidyl azide polymer (GAP) has largely succeeded in the market due to its advantageous properties. Nevertheless, it suffers from various drawbacks such as non-uniform chain termination, possible chlorine content (flame retardant), and toxic epichlorohydrin required for its synthesis. These problems can be bypassed using the structurally related poly(3-azidooxetane). Unfortunately, it is only accessible in moderate yield by polymerization of 3-azidooxetane. Herein, we describe its synthesis by polymer-analogous transformation using the new polymers poly(3-tosyloxyoxetane) and poly(3-mesyloxyoxetane) as precursors. This results in a significantly increased yield and improved safety as handling of the very sensitive 3-azidooxetane is avoided. The aforementioned prepolymers were prepared using boron trifluoride etherate as well as triisobutylaluminum as catalysts. The latter provides polymers of particularly high mol. weight, and the corresponding poly(3-azidooxetane) species was obtained and studied for the first time. In order to shed light on the applicability of poly(3-azidooxetane) as a GAP substitute, it was thoroughly studied with regard to thermal behavior, energetic performance (EXPLO5), plasticizer compatibility, and curing. Moreover, the aquatic toxicity of all involved monomers was analyzed and compared to epichlorohydrin. Here, poly(3-azidooxetane) turned out as a fully adequate, if not more environmentally benign, substitute.
Recommanded Product: Oxetan-3-ol, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts