A new synthetic route of N-(2-Hydroxyethyl)-1,3-propanediamine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4461-39-6, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 4461-39-6, N-(2-Hydroxyethyl)-1,3-propanediamine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 4461-39-6, blongs to alcohols-buliding-blocks compound. Safety of N-(2-Hydroxyethyl)-1,3-propanediamine

In a nitrogen purged glove box, a 3-Liter, 4-neck round-bottom flask, fitted with a mechanical stirrer, thermocouple, nitrogen inlet adapter and septum, was charged with 2-(3- aminopropylamino)ethanol (144 g; 1.22 mol) and sulfolane (1.00 L; 10.5 mol). This was brought to a fume hood where it was attached to a nitrogen line and the septum was replaced with an adapter holding a 1/8 inch diameter Teflon tube attached to a HBr lecture bottle. While stirring, the hydrogen bromide (HBr) gas was admitted subsurface at a rate that allowed the temperature to rise to about 1300C. Addition was discontinued after heat evolution ceased and HBr was no longer absorbed; two equivalents had reacted, giving the dihydrobromide salt of the starting alcohol. The adapter on the reaction flask was replaced with a pressure-equalized dropping funnel containing phosphorus tribromide (PBr3) (132 g, 0.487 mol, 1.2 equiv) which was added over about 10 minutes at a temperature of between about 110 to about 130C. The solution was then stirred under nitrogen at 1200C for 20 minutes, after which time the product had crystallized into a thick cake. Additional sulfolaiie (380 mL) was added, resulting in a slurry which could be stirred at 120C. After a period of time, the hot slurry was transferred through a 3/8 ” polypropylene tube and was dropped into 2 L of acetone, stirring in a 4 L beaker (in three approximately equal portions) to precipitate the product. After each portion, the solid was filtered and rinsed with acetone and the beaker was charged with 2 L of fresh acetone for the next portion. Finally, the round bottom flask was rinsed with acetone and the resulting solid was combined with other portions. The solid was dried by passing nitrogen through the filtration bed overnight, giving 391 g (1.14 mol, 94%) of pale yellow hygroscopic powder. The 1H NMR showed that it contained residual sulfolane in a 0.023:1 mol ratio (Figure 1).[00032] Subsequent studies showed that less PBr3 is needed for this reaction, the 0.33:1 mol ratio required by the stoichiometry is nearly adequate and excess PBr3 contributes to the formation of colored impurities which are removed from the final product as described below. It was also found that the buildup of product cake after PBr3 addition can be prevented by increasing the initial sulfolane charge and by maintaining the reactor temperature at about 120C.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4461-39-6, its application will become more common.

Reference:
Patent; ALBEMARLE CORPORATION; WO2007/53730; (2007); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts