Why do aromatic interactions matter of compound: 1195-58-0

When you point to this article, it is believed that you are also very interested in this compound(1195-58-0)SDS of cas: 1195-58-0 and due to space limitations, I can only present the most important information.

SDS of cas: 1195-58-0. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Electron-Deficient Heteroarenium Salts: An Organocatalytic Tool for Activation of Hydrogen Peroxide in Oxidations.

A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quant. conversions, high preparative yields and excellent chemoselectivity. The high efficiency of electron-poor heteroarenium salts is rationalized by their ability to readily form adducts with nucleophiles, as documented by low pKR+ values (pKR+ < 5) and less neg. reduction potentials (Ered > -0.5 V). Hydrogen peroxide adducts formed in situ during catalytic oxidation act as substrate oxidizing agents. The Gibbs free energies of oxygen transfer from these heterocyclic hydroperoxides to thioanisole, obtained by calculations at the B3LYP/6-311++g(d,p) level, showed that they are much stronger oxidizing agents than alkyl hydroperoxides and in some cases are almost comparable to derivatives of flavin hydroperoxide acting as oxidizing agents in monooxygenases.

When you point to this article, it is believed that you are also very interested in this compound(1195-58-0)SDS of cas: 1195-58-0 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts