The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Dihydropyridines. XII. Electronic structure and reactivity of monocyanopyridines and symmetric dicyanopyridines》. Authors are Kuthan, J..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).Product Details of 1195-58-0. Through the article, more information about this compound (cas:1195-58-0) is conveyed.
cf. CA 65, 3828a. The electronic structure of 2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, 2,6-dicyanopyridine, and 3,5-dicyanopyridine were studied by means of the simple mol. orbital theory (HMO). The reactivity of these compounds toward nucleophilic reagents is discussed with respect to possible formation of corresponding dihydro derivatives or products with transformed functional groups. Ir, N.M.R., and uv spectra of the compounds studied are compared with the calculated values for the bond orders, π-electron densities, and with the theoretical excitation energies. Bond orders and π-electron densities as calculated on the basis of HMO-approximation are correlated with analogous data obtained by the self-consistent-field method.
When you point to this article, it is believed that you are also very interested in this compound(1195-58-0)Product Details of 1195-58-0 and due to space limitations, I can only present the most important information.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts