In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Roles played by carbene substituents during ligand transfer reactions between tungsten fischer carbene complexes and [Pt(COD)Cl2], published in 2021-12-01, which mentions a compound: 12080-32-9, mainly applied to tungsten Fischer carbene ligand transfer reaction platinum chloride; platinum biscarbene triscarbene carbene complex preparation crystal structure; mol structure platinum biscarbene triscarbene carbene complex, Formula: C8H12Cl2Pt.
Fischer carbene ligand transfer reactions from [W{C(X)(C6H4-4-R)}(CO)5] (X = OEt: a series; X = NMe2: b series), containing remote tertiary amino substituents R = R’2N at the Ph ring, to Pt(II) of [Pt(COD)Cl2] precursors, were studied. The number of carbene ligands transferred per Pt ion in these cases are determined by the electronic and steric properties of the heteroatoms of the carbene ligand. Thus, neutral bis(carbene) complexes, [Pt{C(X)(C6H4-4-R)}2Cl2], (R = H (1a); R = NR’2 and R’ = Me (2a), Ph (3a), or 4-BrC6H4 (4a)), are formed from the ethoxycarbene precursors (X = OEt), while cationic tris(carbene) complexes [Pt{C(X)(C6H4-4-R)}3Cl]+ Z-, (R = H (1b) and R = NR’2 and R’ = Me (2b), Ph (3b), or 4-BrC6H4 (4b)) were obtained from the aminocarbene precursors (X = NMe2), the latter with different counterions Z- = Cl-, [W(CO)5Cl]- or PF-6. Electro- and spectroelectrochem. studies indicate consecutive oxidations of the individual carbene ligands, but also a lack of electronic interactions across the (X)C:Pt:C(X) linkages.
This literature about this compound(12080-32-9)Formula: C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts