Related Products of 1195-58-0. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about Two-Phase Oxidations with Aqueous Hydrogen Peroxide Catalyzed by Amphiphilic Pyridinium and Diazinium Salts. Author is Hartman, Tomas; Sturala, Jiri; Cibulka, Radek.
Amphiphilic pyridinium and diazinium salts were shown to be effective catalysts in two-phase (water/chloroform or water/dichloromethane) sulfoxidations and N-oxidations with hydrogen peroxide under mild conditions. This unprecedented oxidation method utilizes covalent bonding of hydrogen peroxide to a simple pyridinium or diazinium nucleus to increase the lipophilicity of the hydroperoxide species and to subsequently activate it for oxidations in a non-polar medium. The catalytic efficiency was found to depend on the type of heteroarenium core and on the lipophilicity of the catalyst. Five series of heteroarenium catalysts were prepared and investigated: 1-Alkyl-3,5-dicyanopyridinium, 1-alkyl-3,5-dinitropyridinium, 1-alkyl-3-cyanopyrazinium, 1-alkyl-4-cyanopyrimidinium and 1-alkyl-4-(trifluoromethyl)pyrimidinium triflates (alkyl=butyl, hexyl, octyl, decyl, dodecyl and hexadecyl). Among them, the 1-octyl-3,5-dinitropyridinium and 1-decyl-4-(trifluoromethyl)pyrimidinium triflates were found to be superior catalysts, showing the best stability and the highest catalytic activity, achieving acceleration by a factor of 350 relative to the non-catalyzed reaction. In contrast to other organocatalytic two-phase oxidations that use hydrogen peroxide, the presented method is characterized by high chemoselectivity and low catalyst loading (5 mol%) and with the reactions being performed under mild conditions, i.e., at 25° using diluted hydrogen peroxide and a non-basic aqueous phase. The catalysts have simple structures and are readily available from com. materials. Practical applications are demonstrated via the oxidation of several types of sulfides and amines.
There is still a lot of research devoted to this compound(SMILES:N#CC1=CC(C#N)=CN=C1)Related Products of 1195-58-0, and with the development of science, more effects of this compound(1195-58-0) can be discovered.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts