Analyzing the synthesis route of 2-(4-Bromophenyl)propan-2-ol

Statistics shows that 2077-19-2 is playing an increasingly important role. we look forward to future research findings about 2-(4-Bromophenyl)propan-2-ol.

Reference of 2077-19-2, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.2077-19-2, name is 2-(4-Bromophenyl)propan-2-ol, molecular formula is C9H11BrO, molecular weight is 215.09, as common compound, the synthetic route is as follows.

General procedure: General Procedure C: To vial equipped with a stir bar and placed under argon atmosphere was added N- ((S)-l-(3-(4-chloro-l-methyl-3-(methylsulfonamido)-lH-indazol-7-yl)-4-oxo-7-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-3,4-dihydroquinazolin-2-yl)-2-(3,5- difluorophenyl)ethyl)-2-((3bS,4aR)-3-(difluoromethyl)-5,5-difluoro-3b,4,4a,5-tetrahydro- lH-cyclopropa[3,4]cyclopenta[l,2-c]pyrazol-l-yl)acetamide (1 equiv, typically 25-50 mg), the appropriate aryl halide/heteroaryl halide (3 equiv), potassium acetate (2.6 equiv) and Pd(PPh3)4 (0.2 equiv). The vial was sealed with a septum capped. To the vial was added l,4-dioxane:water (4: 1) to afford a reaction volume 0.05M in boronic ester. The reaction solution was degassed with argon. The reaction mixture was stirred at 90 C for 5h or l6h. Upon cooling to ambient temperature, the reaction mixture was concentrated in vacuo and the resulting residue was subjected to HPLC purification to afford the indicated product. Alternately, (S)-2-(3-cyclopropyl-lH-pyrazol-l-yl)-N-(2-(3,5-difluorophenyl)-l-(3-(4- (morpholinosulfonyl)phenyl)-4-oxo-7-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-3,4- dihydroquinazolin-2-yl)ethyl)acetamide or 2-((3bR,4aS)-3-(difluoromethyl)-5,5-difluoro- 3b,4,4a,5-tetrahydro-lH-cyclopropa[3,4]cyclopenta[l,2-c]pyrazol-l-yl)-N-((S)-2-(3,5- difluorophenyl)- 1 -(3 -(4-(morpholinosulfonyl)phenyl)-4-oxo-7 -(4,4,5,5 -tetramethyl- 1,3,2- dioxaborolan-2-yl)-3,4-dihydroquinazolin-2-yl)ethyl)acetamide may be substituted for N- ((S)-l-(3-(4-chloro-l-methyl-3-(methylsulfonamido)-lH-indazol-7-yl)-4-oxo-7-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-3,4-dihydroquinazolin-2-yl)-2-(3,5- difluorophenyl)ethyl)-2-((3bS,4aR)-3-(difluoromethyl)-5,5-difluoro-3b,4,4a,5-tetrahydro- lH-cyclopropa[3,4]cyclopenta[l,2-c]pyrazol-l-yl)acetamide. Example 18: Preparation of N-((S)-l-(3-(4-chloro-l-methyl-3-(methylsulfonamido)-lH- indazol-7-yl)-7-(4-(2-hydroxypropan-2-yl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2- (3,5-difhiorophenyl)ethyl)-2-((3bS,4aR)-3-(difluoromethyl)-5,5-difluoro-3b,4,4a,5- tetrahydro- lH-cyclopropa[3,4]cyclopenta[1,2-c]pyrazol- 1 -yl)acetamide The title compound was prepared according to General Procedure C using 2-(4- bromophenyl)propan-2-ol as the coupling partner. Specific details are provided as a representative example of this general procedure. To a 1 dram vial equipped with a stir bar was added N-((S)- 1 -(3 -(4-chloro- 1 -methyl-3 -(methylsulfonamido)- lH-indazol-7 -yl)-4- oxo-7-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-3,4-dihydroquinazolin-2-yl)-2-(3,5- difhiorophenyl)ethyl)-2-((3bS,4aR)-3-(difluoromethyl)-5,5-difhioro-3b,4,4a,5-tetrahydro- lH-cyclopropa[3,4]cyclopenta[l,2-c]pyrazol-l-yl)acetamide (40 mg, 0.043 mmol), 2-(4- bromophenyl)propan-2-ol (27.7 mg, 0.129 mmol), potassium acetate (10.96 mg, 0.112 mmol) and Pd(Ph3P)4 (9.93 mg, 8.59 pmol). The vial was capped with a septum cap and then placed under argon atmosphere (vac/fill x 3). To the vial was added dioxane (687 pl) and water (172 m). The reaction mixture was degassed (vac/fill with argon x 3, the solvent boils slightly under brief vacuum). The reaction mixture was stirred at 90 C for 5 hr. Upon cooling to room temperature, the contents of the vial were transferred to a 20 mL scintillation vial with the aid of DCM and then was concentrated in vacuo using a Biotage V10 evaporator. The residue was then taken up in DMF (1.5 mL) and then filtered through a syringe filter. The filtrate was subjected to HPLC purification with the following conditions: Column = Zorbax Eclipse Plus C 18, 21.2 x 100 mm, 5 pm particles; Solvent A = 0.1% Formic Acid in 100% Water. Solvent B = Acetonitrile. Flow Rate = 40 mL/min. Start % B = 53.2 Final % B = 73.2. Gradient Time = 7 min, then a 2 min hold at 98% B. Wavelength = 215 and 254 nm. ESI+ Range: 150 to 1500 dalton. Sample was loaded at 30% B. This purification afforded N-((S)-l-(3-(4-chloro-l-methyl-3-(methylsulfonamido)- lH-indazol-7-yl)-7-(4-(2-hydroxypropan-2-yl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)- 2-(3,5-difluorophenyl)ethyl)-2-((3bS,4aR)-3-(difluoromethyl)-5,5-difluoro-3b,4,4a,5- tetrahydro-lH-cyclopropa[3,4]cyclopenta[l,2-c]pyrazol-l-yl)acetamide (9.9 mg, 25 % yield, 100% purity). The sample was analyzed using LCMS Method D: retention time = 2.45 min.; observed ion = 939.2 (M+H). 1H NMR (METHANOL-d4, 500 MHz) d 8.35 (d,1H, J=7.9 Hz), 8.13 (s, 1H), 7.96 (br d, 1H, J=8.2 Hz), 7.81 (br d, 2H, J=7.9 Hz), 7.71 (d, 2H, J=8.2 Hz), 7.31 (br d, 1H, J=7.6 Hz), 7.20 (d, 1H, J=7.6 Hz), 6.8-6.8 (m, 1H), 6.63 (br d, 2H, J=6.7 Hz), 4.9-4.9 (m, 1H), 4.55 (d, 2H, J=4.0 Hz), 3.63 (s, 3H), 3.5-3.5 (m, 1H),3.4-3.4 (m, 1H), 3.2-3.3 (m, 3H), 3.12 (br dd, 1H, J=9.2, 14.0 Hz), 2.4-2.5 (m, 2H), 1.63 (s, 6H), 1.36 (br d, 1H, J=6. l Hz), 1.01 (br s, 1H)

Statistics shows that 2077-19-2 is playing an increasingly important role. we look forward to future research findings about 2-(4-Bromophenyl)propan-2-ol.

Reference:
Patent; VIIV HEALTHCARE UK (NO.5) LIMITED; BELEMA, Makonen; BENDER, John A.; FRENNESSON, David B.; GILLIS, Eric P; IWUAGWU, Christiana; KADOW, John F; NAIDU, B. Narasimhulu; PARCELLA, Kyle E.; PEESE, Kevin M.; RAJAMANI, Ramkumar; SAULNIER, Mark G.; WANG, Alan Xiangdong; (313 pag.)WO2019/198024; (2019); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts