New downstream synthetic route of 2,6-Dimethylheptan-4-ol

At the same time, in my other blogs, there are other synthetic methods of this type of compound,108-82-7, 2,6-Dimethylheptan-4-ol, and friends who are interested can also refer to it.

Synthetic Route of 108-82-7, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 108-82-7, name is 2,6-Dimethylheptan-4-ol. A new synthetic method of this compound is introduced below.

Then, using 1-methyl-AZADO synthesized, the activities thereof as an oxidation catalyst were estimated in the same manner using various secondary alcohols specified in Tables 2 and 3. As for the reaction conditions, the catalyst amount was 0.01 eq. in CH2Cl2, and KBr (0.1 eq.), n-Bu4NBr (0.05 eq.) and NaOCl (1.4 eq.) were further added, and the reaction was carried out under ice cooling. The reaction time was 20 minutes. After completion of the reaction, the percent yield of each product was determined. The percent yield was calculated by the formula: (actual yield, i.e., the amount of product)/(theoretical yield, i.e., calculated from the amount of consumed starting material) x 100 (%). For comparative examples, runs were carried out under the same reaction conditions using TEMPO, and each comparative yield was calculated. The results thus obtained are shown in Tables 2 and 3. Table 2 [Show Image] Test No. Alcohol species Yield (%) Catalyst Me-AZADO (Invention) TEMPO (Compar. Ex.) 2-1[Show Image] 84 83 2-2[Show Image] 91 5 2-3[Show Image] 99 16 2-4[Show Image] 93 15 2-5[Show Image] 100 8 2-6[Show Image] 100 12Table 3 Test No. Alcohol species Yield (%) Catalyst Me-AZADO (Invention) TEMPO (Compar. Ex.) 2-7[Show Image] 99 84 2-8[Show Image] 92 68 2-9[Show Image] 89 0 2-10[Show Image] 88 0 2-11[Show Image] 91 5 In the case of secondary alcohols having a relatively simple steric configuration (e.g. Test No. 2-1 and No. 2-7), the use of 1-methyl-AZADO of the invention as an oxidation catalyst and the use of TEMPO for comparison both gave target products in high yields. On the other hand, in the case of secondary alcohols having a sterically bulky, complicated structure, it was found that the use of 1-methyl-AZADO of the invention resulted in rapid oxidation, giving target products in high yields, whereas the use of TEMPO for comparison gave target products only in low yields. In view of such results, it is evident that 1-methyl-AZADO is a catalyst useful as an oxidation catalyst not only for primary alcohols but also secondary alcohols.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,108-82-7, 2,6-Dimethylheptan-4-ol, and friends who are interested can also refer to it.

Reference:
Patent; TOHOKU UNIVERSITY; EP1775296; (2007); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts