A Synthetic Approach to Dimetalated Arenes Using Flow Microreactors and the Switchable Application to Chemoselective Cross-Coupling Reactions was written by Ashikari, Yosuke;Kawaguchi, Tomoko;Mandai, Kyoko;Aizawa, Yoko;Nagaki, Aiichiro. And the article was included in Journal of the American Chemical Society in 2020.Name: 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane This article mentions the following:
In spite of their potential utility, the chem. of dimetallated arenes is still in its infancy because it is extremely difficult to synthesize them. Herein is reported a method of synthesizing arenes bearing a boryl group and a metallic substituent such as boryl, silyl, stannyl or zincyl group, based on generation and reactions of aryllithiums bearing a trialkyl borate moiety in a integrated flow microreactor. The bimetallic arenes showed a remarkable chemoselectivity in palladium-catalyzed cross-coupling reactions. The selectivity was switched by selection of the metal species constituting the dimetallated arenes together with appropriate catalysts. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Name: 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane).
2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Name: 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts