Chiral Bidentate Boryl Ligand-Enabled Iridium-Catalyzed Enantioselective Dual C-H Borylation of Ferrocenes: Reaction Development and Mechanistic Insights was written by Zou, Xiaoliang;Li, Yinwu;Ke, Zhuofeng;Xu, Senmiao. And the article was included in ACS Catalysis in 2022.Application In Synthesis of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol This article mentions the following:
Ferrocenes with planar chirality are an important class of privileged scaffolds for diverse chiral ligands and organocatalysts. The development of efficient catalytic asym. methods under mild reaction conditions is a long-sought goal in this field. Though many transition-metal-catalyzed asym. C-H activation methods were recorded during the last decade, most of them are related to C-C bond-forming reactions. Owing to the useful attribute of the C-B bond, the authors herein report an amide-directed Ir-catalyzed enantioselective dual C-H borylation of ferrocenes. The key to the success of this transformation relies on a chiral bidentate boryl ligand and a judicious choice of a directing group. The current reaction could tolerate a vast array of functionalities, affording a variety of chiral borylated ferrocenes with good to excellent enantioselectivities (35 examples, up to 98% enantiomeric excess). The authors also demonstrated the synthetic utility by preparative-scale reaction and transformations of a borylated product. Finally, from the observed exptl. data, the authors performed DFT calculations to understand its reaction pathway and chiral induction, which reveals that Me C(sp3)-H borylation is crucial to conferring high enantioselectivity through an amplified steric effect caused by an interacted B-O fragment in the transition state. In the experiment, the researchers used many compounds, for example, (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5Application In Synthesis of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol).
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application In Synthesis of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts