Physiological and metabolomics responses of Hydrangea macrophylla (Thunb.) Ser. and Hydrangea strigosa Rehd. to lead exposure was written by Jin, Jing;Song, Ziyi;Zhao, Bing;Zhang, Yuyu;Wang, Ruirui. And the article was included in Ecotoxicology and Environmental Safety in 2022.Electric Literature of C4H10O3 This article mentions the following:
Hydrangea is a potential remediation plant for lead (Pb) pollution. Plant roots communicate with soil through the release of root exudates. It is crucial to study rhizoremediation mechanisms to understand the response of root exudates to contamination stress. Here, we investigated the physiol. responses and metabolomic profiling of two Hydrangea species, a horticultural cultivar (Hydrangea macrophylla (Thunb.) Ser.) and a wild type (Hydrangea strigosa Rehd.), under Pb-free and Pb-stressed conditions for 50 days. The results showed that Pb treatment adversely affected the biomass and root growth of the two species. H. strigosa was a Pb-tolerant species with higher superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and more ascorbic acid (AsA) content in roots. Metabolomic profiling showed that 181 and 169 compounds were identified in H. macrophylla and H. strigosa root exudates, resp., among which 18 showed significant differences between H. macrophylla and H. strigosa under Pb exposure. H. strigosa showed significantly (P < 0.05) higher secretion of sucrose, glycolic acid, and nonanoic acid than H. macrophylla after Pb treatment. Pb stress promoted fatty acid metabolism in H. strigosa, suppressed amino acid metabolism in H. macrophylla, and promoted a higher carbohydrate metabolism in H. strigosa compared with H. macrophylla. This study provides a possible mechanism for the high Pb absorption potential of Hydrangea. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Electric Literature of C4H10O3).
2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Electric Literature of C4H10O3
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts