Design, synthesis and human carbonic anhydrase I, II, IX and XII inhibitory properties of 1,3-thiazole sulfonamides was written by Erigur, Esra Caner;Altug, Cevher;Angeli, Andrea;Supuran, Claudiu T.. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2022.Synthetic Route of C4H10O3 This article mentions the following:
A series of novel 1,3-thiazole sulfonamides I [R = i-Pr, n-Bu, HOCH2CH2, Ph(CH2)4, etc.] has been designed, synthesized and studied their carbonic anhydrase (CA) inhibitory properties. The inhibition property of four human CA isoforms was investigated: hCA I, II, IX, and XII using the standard drug acetazolamide (AAZ) for comparison. The compounds I showed a wide range of inhibition potency towards the cytosolic enzyme hCA I. Nevertheless, the compounds I (R = n-Pr, i-Pr, HOCH2CHMe, HOCHMeCH2, MeOCH2CH2) have shown higher inhibition potential as compared to acetazolamide (KI = 250 nM). The abundant human cytosolic isoform, hCA II, was strongly inhibited by the most compounds in low nanomolar range (KI < 12.1 nM). On the other hand, almost all novel synthesized compounds have shown weaker inhibition potential as compared to acetazolamide against the tumor membrane- associated isoform hCA IX. Finally, the second tumor membrane-associated isoform, hCA XII, showed a wide range of potency that spanned from 9.3 to 729.6 nM. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Synthetic Route of C4H10O3).
2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C4H10O3
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts