Hatano, Manabu et al. published their research in Journal of Organic Chemistry in 2006 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

3,3′-Diphosphoryl-1,1′-bi-2-naphthol-Zn(II) Complexes as Conjugate Acid-Base Catalysts for Enantioselective Dialkylzinc Addition to Aldehydes was written by Hatano, Manabu;Miyamoto, Takashi;Ishihara, Kazuaki. And the article was included in Journal of Organic Chemistry in 2006.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:

A highly enantioselective dialkylzinc (R22Zn) addition to a series of aromatic, aliphatic, and heteroaromatic aldehydes was developed based on conjugate Lewis acid-Lewis base catalysis. Bifunctional BINOL ligands bearing phosphine oxides [P(:O)R2], phosphonates [P(:O)(OR)2], or phosphoramides [P(:O)(NR2)2] at the 3,3′-positions were prepared by using a phospho-Fries rearrangement as a key step. The coordination of a NaphO-Zn(II)-R2 center as a Lewis acid to a carbonyl group in a substrate and the activation of R22Zn(II) with a phosphoryl group (P:O) as a Lewis base in the 3,3′-diphosphoryl-BINOL-Zn(II) catalyst could promote carbon-carbon bond formation with high enantioselectivities (up to >99% ee). Mechanistic studies were performed by X-ray analyses of a free ligand and a tetranuclear Zn(II) cluster, a 31P NMR experiment on Zn(II) complexes, an absence of nonlinear effect between the ligand and Et-adduct of benzaldehyde, and stoichiometric reactions with some chiral or achiral Zn(II) complexes to propose a transition-state assembly including monomeric active intermediates. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts