Facile Cu(OTf)2-Catalyzed Preparation of Per-O-acetylated Hexopyranoses with Stoichiometric Acetic Anhydride and Sequential One-Pot Anomeric Substitution to Thioglycosides under Solvent-Free Conditions was written by Tai, Cheng-An;Kulkarni, Suvarn S.;Hung, Shang-Cheng. And the article was included in Journal of Organic Chemistry in 2003.Formula: C6H14O6 This article mentions the following:
Solvent-free per-O-acetylation of hexoses with a stoichiometric amount of acetic anhydride employing 0.03 mol % Cu(OTf)2 proceeded in high yields (90-99%) at room temperature to give exclusively pyranosyl products as an anomeric mixture, the α/β ratio of which was dependent on the temperature and amount of catalyst used. Sequential anomeric substitution with p-thiocresol in the presence of BF3·etherate gave the thioglycosides, isolated exclusively or predominantly as one anomer in 66-75% yields. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Formula: C6H14O6).
(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C6H14O6
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts