Photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks was written by Dailing, Eric A.;Setterberg, Whitney K.;Shah, Parag K.;Stansbury, Jeffrey W.. And the article was included in Soft Matter in 2015.Related Products of 109-17-1 This article mentions the following:
We present a strategy for directly and efficiently polymerizing aqueous dispersions of reactive nanogels into covalently crosslinked polymer networks with properties that are determined by the initial chem. and phys. nanogel structure. This technique can extend the range of achievable properties and architectures for networks formed in solution, particularly in water where monomer selection for direct polymerization and the final network properties are quite limited. Nanogels were initially obtained from a solution polymerization of a hydrophilic monomethacrylate and either a hydrophilic PEG-based dimethacrylate or a more hydrophobic urethane dimethacrylate, which produced globular particles with diameters of 10-15 nm with remarkably low polydispersity in some cases. Networks derived from a single type of nanogel or a blend of nanogels with different chemistries when dispersed in water gelled within minutes when exposed to low intensity UV light. Modifying the nanogel structure changes both covalent and non-covalent secondary interactions in the crosslinked networks and reveals critical design criteria for the development of networks from highly internally branched, nanoscale prepolymer precursors. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Related Products of 109-17-1).
((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Related Products of 109-17-1
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts