Aspinall, G. O. et al. published their research in Journal of the Chemical Society in 1958 | CAS: 10030-85-0

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 10030-85-0

Gum ghatti (Indian gum). III. Neutral oligosaccharides formed on partial acid hydrolysis of the gum was written by Aspinall, G. O.;Auret, Barbara J.;Hirst, E. L.. And the article was included in Journal of the Chemical Society in 1958.Related Products of 10030-85-0 This article mentions the following:

Gum ghatti (100 g.) in 1.95 l. H2O was heated to 100°, 50 ml. 4N H2SO4 added, and the solution boiled 1.5 hrs. The cooled solution was neutralized with Ba(OH)2 and BaCO3, filtered, concentrated to 400 ml., and poured into 2 l. EtOH. The precipitated degraded polysaccharide A (I) (50 g.) was separated and the liquor concentrated to 200 ml., passed through Amberlite IR-120 (H) and IR-4B (OH), and conced. to 35 g. sirup B (II). I was hydrolyzed again to give a further 15 g. II. II (50 g.) in 200 ml. H2O was chromatographed on 800 g. 1:1 C-Celite. Elution with H2O gave 36 g. monosaccharides [arabinose (III), galactose (IV), xylose, and rhamnose (trace)] and a small fraction (0.8 g.) which gave L-rhamnose hydrate, m. 90-1° [α]D -2°. Oligosaccharides were eluted with EtOHH2O. Chromatography of fraction 1 (0.23 g.) showed 6-(O-β-galactopyranosyl)galactose (V), 3-(O-β-arabopyranosyl)arabinose (VI) and a pentose-containing disaccharide. Hydrolysis of the mixture gave III and IV. Fraction 2 (1.1 g.) was chromatographed on cellulose with 10:4:3 EtOAc-C5H5N-H2O to give 0.15 g. of mixture III, IV and arabinose-containing disaccharides and 0.56 g. sirup B, [α]D 31°. Methylation of 200 mg. II followed by hydrolysis and chromatography on cellulose with 7:3 pert. ether-BuOH gave 40 mg. 2,3,4,6-tetra-O-methyl-D-galactose (VII) (aniline derivative, m. 198°), 35 mg. mixture of VII and 2,3,4-tri-O-methylgalactose (VIII), and 39 mg. VIII (aniline derivative, m. 159-60°). Fraction 3 (205 mg.) chromatographed on cellulose gave 65 mg. mixture III, IV and three III-containing disaccharides, 10 mg. VI, 30 mg. disaccharide, [α]D 125°, which hydrolyzed to IV and glucose, and 50 mg. V. Fraction 4 gave 155 mg. sugar (IX), m. 202-3° [α]D 80°. Methylation of 100 mg. IX followed by hydrolysis and chromatography on cellulose gave 28 mg. VII with a trace of 2,5-di-O-methylarabinose (X), 5 mg. X, 10 mg. tri-O-methylgalactose, 2,4-di-O-methylarabinose (XI), and 20 mg. XI, [α]D 120°. Fraction 5 (80 mg.) separated on cellulose gave 25 mg. mixture of III-containing disaccharides, 5 mg. 3-(O-β-galactopyranosyl)arabinose (XII), 25 mg. 3-(O-β-D-galactopyranosyl)-D-galactose, m. 151-2°, [α]D 69°, and 3 mg. V. Chromatography of 0.58 g. fraction 6 (0.83 g.) on cellulose gave 0.45 g. trisaccharide (XIII), [α]D 20°, and traces of V and monosaccharides. Partial and complete hydrolysis of XIII gave V and IV, resp. Methylation of 200 mg. XIII followed by hydrolysis gave 36 mg. VII and 80 mg. VIII. Fraction 7 gave 265 mg. trisaccharide (XIV), m. 191°, [α]D 39°. Partial hydrolysis of XIV gave III, IV, XII, and V. Methylation of 200 mg. XIV followed by hydrolysis gave 47 mg. VII, 5 mg. X (2,5-di-O-methyl-L-arabonamide, m. 122°), 40 mg. VIII, and 32 mg. XI. Fraction 8 contained 0.47 g. sugar, [α]D 14°, which on partial hydrolysis gave V. Fraction 9 gave 100 mg. tetrasaccharide, m. 171°, [α]D 26°, which on partial hydrolysis gave III, IV, XII, and V. Fraction 10 gave a sugar, m. 177-9° (decomposition), [α]D 19°, which on partial hydrolysis gave III, IV, XII, and V. Thus, the first 3 members of the series O-(β-D-galactopyranosyl)-[(1 → 6)-O-(β-D-galactopyranosyl)]n-(1 → 6)-D-galactose (n = 0, 1, 2) and the first 4 members of the series O-(β-D-galactopyranosyl)-[(1 → 6)-O-(β-D-galactopyranosyl)]n-(1 → 3)-L-arabinose (n = 0, 1, 2, 3) have been characterized. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Related Products of 10030-85-0).

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 10030-85-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts