Forbes, Diane C. et al. published their research in ACS Nano in 2014 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 109-17-1

Polycationic Nanoparticles for siRNA Delivery: Comparing ARGET ATRP and UV-Initiated Formulations was written by Forbes, Diane C.;Peppas, Nicholas A.. And the article was included in ACS Nano in 2014.Product Details of 109-17-1 This article mentions the following:

In this work, we develop and evaluate polycationic nanoparticles for the delivery of small interfering RNA (siRNA). Delivery remains a major challenge for translating siRNA to the clinic, and overcoming the delivery challenge requires effective siRNA delivery vehicles that meet the demands of the specific delivery strategy. Crosslinked polycationic nanoparticle formulations were synthesized using ARGET ATRP or UV-initiated polymerization The one-step, one-pot, surfactant-stabilized monomer-in-water synthesis technique may provide a simpler and faster alternative to complicated, multistep techniques and an alternative to methods that rely on toxic organic solvents. The polymer nanoparticles were synthesized using the cationic monomer 2-(diethylamino)ethyl methacrylate, the hydrophobic monomer tert-Bu methacrylate to tune pH responsiveness, the hydrophilic monomer poly(ethylene glycol) Me ether methacrylate to improve biocompatibility, and crosslinking agent tetraethylene glycol dimethacrylate to enhance colloidal stability. Four formulations were evaluated for their suitability as siRNA delivery vehicles in vitro with the human embryonic kidney cell line HEK293T or the murine macrophage cell line RAW264.7. The polycationic nanoparticles demonstrated efficient and rapid loading of the anionic siRNA following complexation. Confocal microscopy as well as flow cytometry anal. of cells treated with polycationic nanoparticles loaded with fluorescently labeled siRNA demonstrated that the polycationic nanoparticles promoted cellular uptake of fluorescently labeled siRNA. Knockdown experiments using polycationic nanoparticles to deliver siRNA demonstrated evidence of knockdown, thus demonstrating potential as an alternative route to creating polycationic nanoparticles. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Product Details of 109-17-1).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 109-17-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts