Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis was written by Liu, Kun;Studer, Armido. And the article was included in Angewandte Chemie, International Edition in 2022.Recommanded Product: 68716-49-4 This article mentions the following:
A method that uses cooperative nickel and photoredox catalysis for the formal β-C-H arylation of aldehydes and ketones via their readily prepared enol ethers e.g., [(2-methylprop-1-en-1-yl)oxy]tris(propan-2-yl)silaneas with (hetero)aryl bromides RBr (R = Ph, 1-benzofuran-5-yl, quinolin-3-yl, etc.) were reported. The method features mild conditions, remarkable scope and wide functional group tolerance. Importantly, the introduced synthetic strategy also allows the β-alkenylation, β-alkynation and β-acylation of aldehydes under similar conditions. Mechanistic studies revealed that this transformation proceeds through a single electron oxidation/Ni-mediated coupling/reductive elimination cascade. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Recommanded Product: 68716-49-4).
2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Recommanded Product: 68716-49-4
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts