Synthesis and structure-activity relationships of aza- and diazabiphenyl analogues of the antitubercular drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824) was written by Kmentova, Iveta;Sutherland, Hamish S.;Palmer, Brian D.;Blaser, Adrian;Franzblau, Scott G.;Wan, Baojie;Wang, Yuehong;Ma, Zhenkun;Denny, William A.;Thompson, Andrew M.. And the article was included in Journal of Medicinal Chemistry in 2010.Reference of 118289-16-0 This article mentions the following:
New heterocyclic analogs of the potent biphenyl class derived from antitubercular drug I were prepared, aiming to improve aqueous solubility but maintain high metabolic stability and efficacy. The strategy involved replacement of one or both Ph groups by pyridine, pyridazine, pyrazine, or pyrimidine, in order to reduce lipophilicity. For para-linked biaryls, hydrophilicities (ClogP) correlated with measured solubilities, but highly soluble bipyridine analogs displayed weak antitubercular activities. A terminal pyridine or proximal heterocycle allowed retention of potency and provided solubility improvements, particularly at low pH, with examples from the latter classes displaying the better in vivo efficacies, high metabolic stabilities, and excellent pharmacokinetics. Five such compounds were >100-fold better than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection, and two orally bioavailable pyridine analogs (3-4-fold more soluble than the parent at low pH) were superior to antitubercular drug II in a chronic infection model. In the experiment, the researchers used many compounds, for example, 2-Bromopyridine-4-methanol (cas: 118289-16-0Reference of 118289-16-0).
2-Bromopyridine-4-methanol (cas: 118289-16-0) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 118289-16-0
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts