Practical, efficient, and broadly applicable synthesis of readily differentiable vicinal diboronate compounds by catalytic three-component reactions was written by Radomkit, Suttipol;Liu, Zhenxing;Closs, Anna;Mikus, Malte S.;Hoveyda, Amir H.. And the article was included in Tetrahedron in 2017.Computed Properties of C16H20B2N2O2 This article mentions the following:
A practical, efficient and broadly applicable catalytic method for synthesis of easily differentiable vicinal diboronate compounds is presented. Reactions are promoted by a combination of PCy3 or PPh3, CuCl and LiOt-Bu and may be performed with readily accessible alkenyl boronate substrates. Through the use of an alkenyl-B(pin) (pin = pinacolato) or alkenyl-B(dan) (dan = naphthalene-1,8-diaminato) starting material and com. available (pin)B-B(dan) or B2(pin)2 as the reagent, a range of vicinal diboronates, including those that contain a B-substituted quaternary carbon center, may be prepared in up to 91% yield and with >98% site selectivity. High enantioselectivities can be obtained (up to 96:4 er) through the use of com. available chiral bis-phosphine ligands for reactions that afford mixed diboronate products. In the experiment, the researchers used many compounds, for example, 2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (cas: 1214264-88-6Computed Properties of C16H20B2N2O2).
2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (cas: 1214264-88-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Computed Properties of C16H20B2N2O2
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts