Concise access to perimidines by palladium (II) complexes via acceptorless dehydrogenative coupling of alcohols was written by Clinton, Savarimuthu Selvan;Ramesh, Rengan;Malecki, Jan Grzegorz. And the article was included in Applied Organometallic Chemistry in 2022.Formula: C7H7ClO This article mentions the following:
A facile protocol for the one-pot synthesis of 2,3-dihydro-1H-perimidines via dehydrogenative coupling of easily exploitable benzyl alcs. supported by new Pd(II) complexes has been reported. To accomplish the construction of perimidines, a new set of palladium(II) complexes [Pd(L)Cl (PPh3)] encompassing biphenyl benzhydrazone ligands I has been reported as catalysts. Structural characterization by elemental anal., FT-IR, NMR (1H and 13C), and mass spectral analyses confirmed the composition of synthesized complexes. The mol. structures of complexes I(R = H, OCH3), were unequivocally resolved using single-crystal X-ray diffraction. It reveals that the complex espoused distorted square-planar geometry around Pd(II) ion chelated by azomethine nitrogen and imidolate oxygen of biphenyl benzhydrazone ligands with labile chloride and a triphenylphosphine. Further, the selective synthesis of a broad range of functionalized perimidines has been accomplished via ADC of a variety of alcs. with 1,8-diaminonaphthalene. The palladium complexes mediated catalytic synthesis offered good yields of perimidines up to 86% using only 0.5 mol% catalyst loading. A probable mechanism to the formation of perimidines was postulated from the results of control exptl. investigations. The environmentally compassionate, greener ADC protocol progresses via the generation of aldehyde intermediate and releases only water and hydrogen gas. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Formula: C7H7ClO).
(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C7H7ClO
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts