Lv, Jing et al. published their research in Inorganic Chemistry in 2019 | CAS: 5856-63-3

(R)-2-Aminobutan-1-ol (cas: 5856-63-3) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C4H11NO

Two Penta-Supertetrahedral Cluster-Based Chalcogenide Open Frameworks: Effect of the Cluster Spatial Connectivity on the Electron-Transport Efficiency was written by Lv, Jing;Zhang, Jiaxu;Xue, Chaozhuang;Hu, Dandan;Wang, Xiang;Li, Dong-Sheng;Wu, Tao. And the article was included in Inorganic Chemistry in 2019.Electric Literature of C4H11NO This article mentions the following:

High-degree connectivity of clusters in open-framework chalcogenide semiconductors conceptually facilitates electron mobility between clusters; however, no direct evidence was obtained to prove the prediction because of the shortage of suitable structure models among such systems. Herein, two open-framework chalcogenides built from the same types of heterometallic P2-CuInSnS clusters but with different spatial connectivities of clusters were obtained, in which 3-connected clusters are assembled into a 3D framework with SrSi2 topol. (MCOF-1) and 4-connected clusters (μ4-P2) are arranged into diamond topol. (MCOF-2). Compared to MCOF-1, MCOF-2 exhibits a relatively rapid photocurrent response, good reproducibility, and high electrocatalytic oxygen reduction reaction activity. This work substantially demonstrates that cluster-based chalcogenide frameworks with higher-degree cluster connectivity possess faster electron-transport efficiency between adjacent clusters relative to low-connected ones with the same building units. In the experiment, the researchers used many compounds, for example, (R)-2-Aminobutan-1-ol (cas: 5856-63-3Electric Literature of C4H11NO).

(R)-2-Aminobutan-1-ol (cas: 5856-63-3) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C4H11NO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts