Antioxidant defence system based oxidative stress mitigation through dietary jamun tree leaf in experimentally infected snubnose pompano, Trachinotus blochii was written by Prabu, Dhanasekaran Linga;Ebeneezar, Sanal;Chandrasekar, Selvam;Kavitha, Mookaiah;Vijayagopal, Pananghat. And the article was included in Fish Physiology and Biochemistry in 2021.Formula: C18H32CaN2O10 This article mentions the following:
A 45-day feeding trial was conducted to evaluate the effect of dietary jamun tree leaf (JL) on the antioxidant defense system-based disease resistance in juveniles of Trachinotus blochii. The juveniles of snubnose pompano were distributed into four treatment groups in triplicates. Each treatment was fed with a diet containing either 0 (0JL), 0.5 (0.5JL), 1 (1JL) and 1.5% JL (1.5JL) in the feed. After feeding trial, the fishes were exptl. infected with Vibrio parahaemolyticus. The activities of oxidative stress enzymes such as superoxide dismutase and catalase were found to be increasing with increasing level of dietary JL incorporation, and the lower value was witnessed in control group in pre- and post-challenge. After challenge, the alanine and aspartate aminotransferase activities in all the treatments were significantly increased (P < 0.05) than the pre-challenge condition and exhibited reverse trend with the antioxidant enzymes. The alk. and acid phosphatase activities were found higher in 1.5JL group and showed significant difference (P < 0.05) among the treatments. The respiratory burst activity and liver glycogen content showed an increasing trend as the level of inclusion of JL increased in the diet. The acetylcholinesterase activity was significantly plunged (P < 0.05) after exptl. infection, and JL diet fed groups showed better activity. After exptl. infection with V. parahaemolyticus, the highest relative percentage of survival was observed in 1JL and 1.5JL groups. Hence, dietary supplementation of jamun tree leaf at the level of 1% is adequate to reduce the oxidative stress and improved the innate immune status through antioxidant defense system. In the experiment, the researchers used many compounds, for example, Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6Formula: C18H32CaN2O10).
Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C18H32CaN2O10
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts