A Cobalt(II) Complex Bearing the Amine(imine)diphosphine PN(H)NP Ligand for Asymmetric Transfer Hydrogenation of Ketones was written by Huo, Shangfei;Chen, Hong;Zuo, Weiwei. And the article was included in European Journal of Inorganic Chemistry in 2021.Name: (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:
Novel chiral cobalt complex a containing amine(imine)diphosphine PN(H)NP ligand and complex b containing bis(amine)diphosphine PN(H)N(H)P ligand were synthesized. The structures of two complexes were characterized by X-ray crystallog. and high resolution mass spectrometry. The catalytic performances of cobalt complexes a and b for asym. transfer hydrogenation (ATH) of ketones under mild conditions were evaluated using 2-propanolisopropanol as solvent and hydrogen source after being activated by 8 equiv of base. Complex a showed a good reactivity for reduction of ketones, with a turnover number (TON) of up to 555, and a maximum enantiomeric excess (ee) value of up to 91%. Complex b exhibited inertness for hydrogenation of ketones. Electronic structure studies on a and b were conducted to account for the function of ligands on the catalytic performances. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Name: (R)-1-(3-Chlorophenyl)ethanol).
(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Name: (R)-1-(3-Chlorophenyl)ethanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts