Rajesh, Sarigama published the artcileSynthetic ionizable aminolipids induce a pH dependent inverse hexagonal to bicontinuous cubic lyotropic liquid crystalline phase transition in monoolein nanoparticles, Recommanded Product: 2-Morpholinoethanol, the publication is Journal of Colloid and Interface Science (2021), 85-95, database is CAplus and MEDLINE.
A prospective class of materials for drug delivery is lyotropic liquid crystalline (LLC) nanoparticles, such as cubosomes and hexosomes. Efforts are being made to generate a pH dependent system, which exhibits slow release hexosomes (H2) at physiol. pH and relatively fast release cubosomes (Q2) at acidic disease sites such as in various cancers and bacterial infection (pH ∼ 5.5-6.5). Herein, we report the synthesis of nine ionizable aminolipids, which were doped into monoolein (MO) lipid nanoparticles. Using high throughput formulation and synchrotron small angle X-ray scattering (SAXS), the effects of aminolipid structure and concentration on the mesophase of MO nanoparticles at various pHs were determined As the pH changed from neutral to acidic, mesophases, could be formed in an order L2 (inverse micelles) → H2 → Q2. Specifically, systems with heterocyclic oleates exhibited the H2 to Q2 transition at pH 5.5-6.5. Furthermore, the phase transition pH could be fine-tuned by incorporating two aminolipids into the nanoparticles. Nanoparticles with a pH dependent phase transition as described in this study may be useful as drug delivery carriers for the treatment of cancers and certain bacterial infection.
Journal of Colloid and Interface Science published new progress about 622-40-2. 622-40-2 belongs to alcohols-buliding-blocks, auxiliary class Morpholine,Alcohol, name is 2-Morpholinoethanol, and the molecular formula is C6H13NO2, Recommanded Product: 2-Morpholinoethanol.
Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts