Cai, Qinhong published the artcileA cross-comparison of biosurfactants as marine oil spill dispersants: Governing factors, synergetic effects and fates, Related Products of alcohols-buliding-blocks, the main research area is biosurfactant oil spill dispersant synergetic effect biodegradation wastewater treatment; Biosurfactant-based dispersants; Exmulsins; Oil spill dispersion; Surfactins; Trehalose lipids.
Biosurfactant-based dispersants (BBDs) may be more effective, cost-efficient and environmentally friendly than dispersants currently used for oil spill response. An improved understanding of BBD performance is needed to advance their development and com. use. In this study, the ability of four BBDs, i.e. sufactins, trehalose lipids, rhamnolipids and exmulsins, alone and as various combinations to disperse Arabian light crude oil and weathered Alaska North Slope crude oil was compared to a widely used com. oil dispersant (Corexit 9500A). Surfactin and trehalose lipids, which have balanced surface activity/emulsification ability, showed dispersion efficacy comparable to Corexit 9500A. Rhamnolipids (primarily a surface-active agent) and exmulsins (primarily an emulsifier) when used alone had significantly lower efficacy. However, blends of these surfactants had excellent dispersion performance because of synergistic effects. Balanced surface activity and emulsification ability may be key to formulate effective BBDs. Of the BBDs evaluated, surfactins with an effective dispersant-to-oil ratio as low as 1:62.3 and trehalose lipids with high oil affinity, biodegradation rate, and low toxicity characteristics show the most promise for com. development.
Journal of Hazardous Materials published new progress about Affinity. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Related Products of alcohols-buliding-blocks.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts