Russo, Pasquale published the artcileEffect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation, Category: alcohols-buliding-blocks, the main research area is Starmerella Saccharomyces malolactic mixed fermentation red wine; Lactobacillus plantarum; Malolactic fermentation; Mixed fermentation; Non-Saccharomyces; Oenococcus oeni; Starmerella bacillaris; Wine.
This work aims to improve the management of the malolactic fermentation (MLF) in red wines by elucidating the interactions between Starmerella bacillaris and Saccharomyces cerevisiae in mixed fermentations and malolactic bacteria. Two Starm. bacillaris strains were individually used in mixed fermentations with a com. S. cerevisiae. MLF was performed using two autochthonous Lactobacillus plantarum and one com. Oenococcus oeni inoculated following a simultaneous (together with S. cerevisiae) or sequential (at the end of alc. fermentation) approach. The impact of yeast inoculation on the progress of MLF was investigated by monitoring the viable microbial populations and the evolution of the main oenol. parameters, as well as the volatile organic composition of the wines obtained in mixed and pure micro-scale wine making trials. Our results indicated that MLF was stimulated, inhibited, or unaffected in mixed fermentations depending on the strains and on the regime of inoculation. O. oeni was able to perform MLF under all exptl. conditions, and it showed a minimal impact on the volatile organic compounds of the wine. L. plantarum was unable to perform MLF in sequential inoculation assays, and strain-depending interactions with Starm. bacillaris were indicated as factor affecting the outcome of MLF. Moreover, uncompleted MLF were related to a lower aromatic complexity of the wines. Our evidences indicate that tailored studies are needed to define the appropriate management of non-Saccharomyces and malolactic starter cultures in order to optimize some technol. parameters (i.e. reduction of vinification time) and to improve qual. features (i.e. primary and secondary metabolites production) of red wines.
Food Research International published new progress about Fermentation. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Category: alcohols-buliding-blocks.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts