SIRT1 Activation by Polydatin Alleviates Oxidative Damage and Elevates Mitochondrial Biogenesis in Experimental Diabetic Neuropathy was written by Bheereddy, Preethi;Yerra, Veera Ganesh;Kalvala, Anil Kumar;Sherkhane, Bhoomika;Kumar, Ashutosh. And the article was included in Cellular and Molecular Neurobiology in 2021.Reference of 27208-80-6 The following contents are mentioned in the article:
Abstract: Mitochondrial dysfunction has been implicated as a one of the major factors linked to the development of painful diabetic neuropathy (DN). Several studies have demonstrated that sirtuin (SIRT1) activation recuperates nerve function by activating mitochondrial biogenesis. In this study, polydatin (25 and 50 mg/kg, oral) was administered for last 2 wk of 8-wk study to diabetic Sprague-Dawley rats weighing 250-300 g (post 6-wk of streptozotocin 55 mg/kg, i.p.). Treated diabetic rats also showed improvement in motor/sensory nerve conduction velocities and nerve blood flow. For in vitro studies, Neuro2a cells were exposed to high-glucose (30 mM) condition to simulate short-term hyperglycemia. Polydatin was evaluated for its role in SIRT1 and Nrf2 activation at a dose of 5, 10, and 20μM concentrations Polydatin exposure normalized the mitochondrial superoxides, membrane potentials and improved neurite outgrowth in high-glucose-exposed Neuro2a cells. Increased SIRT1 activation by polydatin resulted in peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) directed mitochondrial biogenesis. SIRT1 activation also facilitated Nrf2-directed antioxidant signaling. Study results inferred that decline in mitochondrial biogenesis and oxidative function in diabetic rats and high-glucose-exposed Neuro2a cells, could be counteracted by polydatin administration, postulated via enhancing SIRT1 and Nrf2 axis. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Reference of 27208-80-6).
(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 27208-80-6
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts