Optimization of the Isopentenol Utilization Pathway for Isoprenoid Synthesis in Escherichia coli was written by Ma, Xiaoqiang;Liang, Hong;Pan, Qiuchi;Prather, Kristala L. J.;Sinskey, Anthony J.;Stephanopoulos, Gregory;Zhou, Kang. And the article was included in Journal of Agricultural and Food Chemistry in 2022.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:
Engineering microbes to produce isoprenoids can be limited by the competition between product formation and cell growth because biomass and isoprenoids are naturally derived from central metabolism Recently, a two-step synthetic pathway was developed to partially decouple isoprenoid formation from central carbon metabolism The pathway used exogenously added isopentenols as substrates. In the present study, we systematically optimized this isopentenol utilization pathway in Escherichia coli by comparing enzyme variants from different species, tuning enzyme expression levels, and using a two-stage process. Under the optimal conditions found in this study, ~300 mg/L lycopene was synthesized from 2 g/L isopentenol in 24 h. The strain could be easily modified to synthesize two other isoprenoid mols. efficiently (248 mg/L β-carotene or 364 mg/L R-(-)-linalool produced from 2 g/L isopentenol). This study lays a solid foundation for producing agri-food isoprenoids at high titer/productivity from cost-effective feedstocks. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).
(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts