Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems was written by Yu, Timothy C.;Liu, Winnie L.;Brinck, Marcia S.;Davis, Jessica E.;Shek, Jeremy;Bower, Grace;Einav, Tal;Insigne, Kimberly D.;Phillips, Rob;Kosuri, Sriram;Urtecho, Guillaume. And the article was included in Nature Communications in 2021.Formula: C9H18O5S The following contents are mentioned in the article:
A crucial step towards engineering biol. systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theor. optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Formula: C9H18O5S).
(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C9H18O5S
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts