Why Catechin and Epicatechin from Early Hopping Impact the Color of Aged Dry-Hopped Beers while Flavan-3-ol Oligomers from Late and Dry Hopping Increase Colloidal Instability was written by Silva Ferreira, Carlos;Simon, Margaux;Collin, Sonia. And the article was included in Journal of the American Society of Brewing Chemists.SDS of cas: 29106-49-8 The following contents are mentioned in the article:
Dry hopping imparts distinct aromas but also a series of non-volatile compounds suspected of causing flavor and phys. instability during beer storage. In this work, color, chill haze, total polyphenols, total flavanoids, and flavan-3-ol monomers (catechin and epicatechin) and oligomers (procyanidin dimers and trimers) were monitored in five com. pale-colored Belgian dry-hopped beers over 24 mo of storage at 20 °C in the dark. Fresh dry-hopped beers contained unusually high levels of flavan-3-ol monomers (up to 6.6 mg/L) and oligomers (up to 14.1 and 10.2 mg/L dimers and trimers, resp.). The increase in color intensity during storage (up to 6.4°EBC) correlated with fresh beer monomer levels, while the oligomer content correlated with chill haze formation (up to 25.7°EBC). The evolution of these two phys. attributes also correlated with the level of total polyphenols in the fresh beers. In a pilot-scale production, kettle hopping was shown to impart either monomers (early) or oligomers (late), while dry hopping promoted efficient extraction of both monomers and dimers (extraction yields of 62 and 74%, resp.). Dry hopping thus plays an important role in color and chill haze increase. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).
(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts