Light radiation promoted stilbene accumulation in peanut sprouts: a response of the reestablishment of oxidant-antioxidant homeostasis was written by Zhu, Tong;Yang, Jinghui;Zhang, Di;Cai, Qinqin;Shen, Yi;Tu, Siying;Tu, Kang. And the article was included in Acta Physiologiae Plantarum in 2021.Electric Literature of C20H22O8 The following contents are mentioned in the article:
The effect of light radiation on stilbene induction and reactive oxygen species (ROS) metabolism of peanut sprouts were explored in this study. Firstly, different types of light sources with same intensity, including white light-emitting diode (LED), UV-A, UV-B and UV-C, were used to radiate peanuts during germination. Results showed contents of stilbenes and total phenolics were significantly promoted by light radiation and different types of stilbene compound were significantly induced in response to different types of light. Secondly, UV-C radiation was selected to treat peanuts with different intensities during germination. Results showed contents of stilbenes, total phenolics, total flavonoids, activity of antioxidant enzymes and phenylalanine ammonia-lyse (PAL) increased significantly with the increasing UV-C intensity. H2O2 showed a remarkable neg. correlation with stilbenes, antioxidants, PAL, peroxidase and catalase. Contents of stilbenes and antioxidants of peanut sprouts could be increased by light radiation effectively in the germination process and the underlying inducing mechanism by UV-C radiation was involved with the mediation of oxidant-antioxidant homeostasis. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Electric Literature of C20H22O8).
(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C20H22O8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts