Enhanced bioavailability and anti-hyperglycemic activity of young apple polyphenols by complexation with whey protein isolates was written by Li, Dan;Yang, Yongli;Yang, Xi;Wang, Zichao;Yao, Xiaolin;Guo, Yurong. And the article was included in Journal of Food Science in 2022.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:
This study aims to evaluate the effects of complexation of whey protein isolate (WPI) and young apple polyphenols (YAP) on the bioavailability and anti-hyperglycemic activity of YAP. Two types of WPI-YAP complexes were fabricated by mixing WPI with YAP at 25°C (WPI-YAP) and 90°C (WPI-YAP-H), resp. The intermol. interactions between WPI and YAP were investigated by fluorescence spectroscopy and CD analyses. The in vitro bioaccessibility and bioavailability of YAP were determined using a simulated gastrointestinal digestion and human Caco-2 cells model. It was found that the total polyphenols transport efficiency was improved from 39.8% (YAP) to 48.2% (WPI-YAP) and 56.1% (WPI-YAP-H), indicating that the bioavailability of YAP was improved by complexation with WPI. Besides, after complexation with WPI, YAP displayed an improved in vivo effect on alleviating the increase in postprandial blood glucose level than the pure YAP, with WPI-YAP-H showing a better effect. This finding indicates that co-complexation of YAP with WPI is an effective way to improve the functionality of YAP, and the WPI-YAP complexes are also expected to have potential application in designing YAP-containing functional foods. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).
(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts