Nanoscale wetting and fouling resistance of functionalized surfaces: Computational approach was written by Yiapanis, George;Maclaughlin, Shane;Evans, Evan J.;Yarovsky, Irene. And the article was included in Langmuir in 2014.COA of Formula: C9H20O2 The following contents are mentioned in the article:
A computational modeling methodol. has been developed and employed to characterize the nanoscale wettability and antifouling properties of functionalized hard and deformable surfaces, with a specific focus on poly(ethylene glycol) grafted substrates and their resistance to graphitic carbons. Empirical evidence suggests that the antifouling behavior of polyethylene PEG is associated with two main mechanisms: steric repulsions and hydration via formation of a structured water layer. However, there is also little attention paid to the contribution of steric repulsion vs surface hydration. We examine these two mechanisms through a combination of in silico contact angle and force measurements at the nanoscale level. We investigate the properties of the grafted functional chains and the underlying substrate, responsible for resisting surface deposition of graphitic contaminants in aqueous solution Our results reveal that the fouling-release efficiency is enhanced when PEG chains are grafted onto hard hydrophilic substrates such as silica in contrast to deformable polymer substrates where surface modifications are effectively mitigated during interfacial contact with a hard contaminant. We conclude that the contribution of steric repulsion vs surface hydration to the antifouling ability of surfaces is strongly dependent on the nanoscale structure and deformability of the substrate. This generic method can be applied to examine individual contribution of steric repulsions and surface hydration to antifouling performance of grafted chains. This study involved multiple reactions and reactants, such as 2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4COA of Formula: C9H20O2).
2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C9H20O2
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts