Oeyen, Merel et al. published their research in Virology in 2021 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Reference of 923-61-5

Labyrinthopeptin A1 inhibits dengue and Zika virus infection by interfering with the viral phospholipid membrane was written by Oeyen, Merel;Meyen, Eef;Noppen, Sam;Claes, Sandra;Doijen, Jordi;Vermeire, Kurt;Sussmuth, Roderich D.;Schols, Dominique. And the article was included in Virology in 2021.Reference of 923-61-5 The following contents are mentioned in the article:

To date, there are no broad-spectrum antivirals available to treat infections with flaviviruses such as dengue (DENV) and Zika virus (ZIKV). In this study, we determine the broad antiviral activity of the lantibiotic Labyrinthopeptin A1. We show that Laby A1 inhibits all DENV serotypes and various ZIKV strains with IC50 around 1μM. The structurally related Laby A2 also displayed a consistent, but about tenfold lower, antiviral activity. Furthermore, Laby A1 inhibits many viruses from divergent families such as HIV, YFV, RSV and Punta Torovirus. Of interest, Laby A1 does not show activity against non-enveloped viruses. Its antiviral activity is independent of the cell line or the used evaluation method, and can also be observed in MDDC, a physiol. relevant primary cell type. Furthermore, Laby A1 demonstrates low cellular toxicity and has a more favorable SI compared to duramycin, a well-described lantibiotic with broad-spectrum antiviral activity. Time-of-drug addition experiments demonstrate that Laby A1 inhibits infection and entry processes of ZIKV and DENV. We reveal that Laby A1 performs its broad antiviral activity by interacting with a viral factor rather than a cellular factor, and that it has virucidal properties. Finally, using SPR interaction studies we demonstrate that Laby A1 interacts with several phospholipids (i.e. PE and PS) present in the viral envelope. Together with other recent Labyrinthopeptin antiviral publications, this work validates the activity of Laby A1 as broad antiviral entry inhibitor with a unique mechanism of action and demonstrates its potential value as antiviral agent against emerging flaviviruses. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Reference of 923-61-5).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Reference of 923-61-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts