Occurrence and Exposure Assessment of Bisphenol Analogs Through Different Types of Drinking Water in Korea was written by Lim, Jae-Eun;Liao, Chunyang;Moon, Hyo-Bang. And the article was included in Exposure and Health.Recommanded Product: 620-92-8 The following contents are mentioned in the article:
Presence of endocrine disruptors in drinking water is a public and global concern. Bisphenol A (BPA) has been primarily used for polycarbonate plastics and epoxy resins. Due to domestic and global regulations on BPA, other bisphenol analogs (BPs) have been introduced as alternatives. Despite this, few studies have been conducted for human health risks of BPA and their alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), through the consumption of drinking water. The present study aimed to determine seven BPs in three types of drinking water (tap water, purified water, and bottled water) to assess the occurrence, regional differences, source tracking, and potential health risks of BPs. BPA and BPF were detectable in almost all drinking water samples. The BPA concentration in tap water was significantly higher than that observed in purified water, whereas the BPF concentration in purified water was higher than those observed in tap water and bottled water. This result provides a wake-up call to improve the safety of purified water for emerging contaminants, such as BPF. The highest BP concentrations were observed for regions with intensive industrial activities and human populations. The concentration ratios of BPF/BPA in all tap water samples were greater than 1, indicating replacement of BPA with BPF in industrial markets. Boiling increased BPA and decreased BPF and BPS concentrations in tap water. The estimated daily intakes of BPA through consumption of drinking water for all age groups and scenarios (0.36-0.72 ng/kg bw/day) were lower than the tolerable daily intake (4.0 μg/kg bw/day) proposed by the European Food Safety Authority, implying a limited health risk. Toddlers were the highest exposure group for all BPs and scenarios. This is the first comprehensive survey of several BPs in different types of drinking water. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Recommanded Product: 620-92-8).
4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 620-92-8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts