Tan, Qian team published research in Fundamental & Clinical Pharmacology in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Application of C20H34O

In general, the hydroxyl group makes alcohols polar. 24034-73-9, formula is C20H34O, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application of C20H34O

Tan, Qian;Yu, Danfang;Song, Lin research published 《 Atorvastatin disrupts primary human brain microvascular endothelial cell functions via prenylation-dependent mitochondrial inhibition and oxidative stress》, the research content is summarized as follows. Primary human brain microvascular endothelial cell (HBMEC) is the major component of the blood-brain barrier (BBB). Atorvastatin, a HMG-CoA reductase inhibitor, is a cholesterol-lowering drug commonly used to reduce the risk for cardiovascular disease. Numerous studies have reported the pleiotropic effects of atorvastatin on endothelial cells, but the findings are controversial and inconclusive. In addition, little is known about the biol. effects of atorvastatin on HBMEC. In this work, we demonstrate that atorvastatin at micromolar but not nanomolar concentrations induces dysfunctions of a number of HBMEC events, including differentiation into capillary network, migration and growth but not cell adhesion. We further show that the inhibitory effects of atorvastatin on HBMEC are independent of angiogenesis stimulators. Atorvastatin induces HBMEC apoptosis even in the presence of vascular endothelial growth factor (VEGF) and serum. Mechanism studies indicate that atorvastatin at micromolar concentration leads to protein prenylation inhibition, mitochondrial dysfunction and thereby subsequent oxidative stress and damage in HBMEC. Rescue experiments confirm that atorvastatin inhibits HBMEC functions via prenylation-dependent mitochondrial inhibition. Our work reveals the inhibitory effects of atorvastatin on HBMEC and suggests the possible neg. influence of atorvastatin in blood-brain barrier.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Application of C20H34O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts