With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
Morrison, Ryan J.;van der Mei, Farid W.;Romiti, Filippo;Hoveyda, Amir H. research published 《 A Catalytic Approach for Enantioselective Synthesis of Homoallylic Alcohols Bearing a Z-Alkenyl Chloride or Trifluoromethyl Group. A Concise and Protecting Group-Free Synthesis of Mycothiazole》, the research content is summarized as follows. A protecting group-free strategy is presented for diastereo- and enantioselective routes that can be used to prepare a wide variety of Z-homoallylic alcs. with significantly higher efficiency than is otherwise feasible. The approach entails the merger of several catalytic processes and is expected to facilitate the preparation of bioactive organic mols. More specifically, Z-chloro-substituted allylic pinacolatoboronate is first obtained through stereoretentive cross-metathesis between Z-crotyl-B(pin) (pin = pinacolato) and Z-dichloroethene, both of which are com. available. The organoboron compound may be used in the central transformation of the entire approach, an α- and enantioselective addition to an aldehyde, catalyzed by a proton-activated, chiral aminophenol-boryl catalyst. Catalytic cross-coupling can then furnish the desired Z-homoallylic alc. in high enantiomeric purity. The olefin metathesis step can be carried out with substrates and a Mo-based complex that can be purchased. The aminophenol compound that is needed for the second catalytic step can be prepared in multigram quantities from inexpensive starting materials. A significant assortment of homoallylic alcs. bearing a Z-F3C-substituted alkene can also be prepared with similar high efficiency and regio-, diastereo-, and enantioselectivity. What is more, trisubstituted Z-alkenyl chloride moiety can be accessed with similar efficiency albeit with somewhat lower α-selectivity and enantioselectivity. The general utility of the approach is underscored by a succinct, protecting group-free, and enantioselective total synthesis of mycothiazole, a naturally occurring anticancer agent through a sequence that contains a longest linear sequence of nine steps (12 steps total), seven of which are catalytic, generating mycothiazole in 14.5% overall yield.
Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts