Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. SDS of cas: 533-73-3
Huo, Yang;Zhang, Dan;Wu, Jinghui;Wang, Xianze;Wang, Xiaohong;Shao, Changlu;Crittenden, John C.;Huo, Mingxin research published 《 Oxidation of phthalate acid esters using hydrogen peroxide and polyoxometalate/graphene hybrids》, the research content is summarized as follows. Phthalate acid esters (PAEs) have been adsorbed and oxidatively degraded into small mols. including lactic acid (LA), formic acid (FA), H2O and CO2 using polyoxometalates (POMs)/graphene hybrids. We demonstrated that super-lower concentrations of PAEs could be oxidized, which was due to their unique structure. POM mols. have been embedded onto graphene to form H5PMo10V2O40@surfactant(n)/Graphene(L wt%) (abbreviated as HPMoV@Surf(n)/GO(L wt%)) using surfactants with the carbon chain length n = 2, 4, 6 and 8 for the loading of HPMoV. The coexistence of the graphene and surfactant layer (on HPMoV@Surf(n)/GO(20 wt%)) adsorbed PAE mols. and transported them rapidly to HPMoV active sites. And n values determined the electron transfer ability between graphene and POMs that promoted PAEs oxidation The loading of POMs on the surface of graphene permitted HPMoV@Surf(n)/GO(L wt%) act as interfacial catalyst which degraded various PAEs (i.e., di-Et phthalate (DEP), diallyl phthalate (DAP) and di (2-ethylhexyl) phthalate (DEHP)) while removed more than 70% of TOC and COD. The degradation of DEP achieved 93.0% with HPMoV@Surf(n)/GO(20 wt%) and H2O2, which followed first-order kinetics and the reaction activation energy (Ea) of 23.1 kJ/mol. Further, HPMoV@Surf(n)/GO(20 wt%) showed potential for the removal of PAEs in Wastewater Treatment Plant (WWTP), and the degradation efficiency for PAE (DEP) in secondary effluent achieved 55.0%. In addition, the loading method for POMs on graphene eliminated the leaching of POMs from graphene, and the degradation efficiency could still reach 88.1% after ten recycles.
533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., SDS of cas: 533-73-3
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts