In 2017,Yu, Jianfei; Duan, Meng; Wu, Weilong; Qi, Xiaotian; Xue, Peng; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu published 《Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones》.Chemistry – A European Journal published the findings.Reference of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol The information in the text is summarized as follows:
We have successfully developed a series of novel and modular ferrocene-based amino-phosphine-alc. (f-Amphol) ligands and applied them to iridium-catalyzed asym. hydrogenation of various simple ketones to afford the corresponding chiral alcs. with excellent enantioselectivities and conversions (98-99.9 % ee, >99 % conversion, turnover number up to 200,000). Control experiments and d. functional theory (DFT) calculations have shown that the hydroxyl group of our f-Amphol ligands played a key role in this asym. hydrogenation. In the part of experimental materials, we found many familiar compounds, such as (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol(cas: 126456-43-7Reference of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol)
(1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol(cas: 126456-43-7) belongs to anime. Primary amines having a tertiary alkyl group (R3CNH2) are difficult to prepare with most methods but are made industrially by the Ritter reaction. In this method a tertiary alcohol reacts with hydrogen cyanide (HCN) in the presence of a concentrated strong acid; a formamide, RNH―CHO, is formed first, which then undergoes hydrolysis.Reference of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts